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Synchrotron light sources (~50 worldwide)
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Cement hydration
Sulfate-resisting cement: CEM I 52.5 N HTS
heterogeneous material & highly alkaline (pH>12.5)

 Clinker phases in non hydrated cement wt%:
 Alite 3CaO⋅SiO2 ~61
 Belite 2CaO⋅SiO2 ~19
 Aluminate 3CaO⋅Al2O3 ~3.9
 Ferrite       4CaO⋅Al2O3⋅Fe2O3 ~5.8
 CaCO3 ~3.7
 Anhydrite CaSO4 ~3.6
 Others ≤ 2

 Hydrated cement phases in wt% (w/c 0.4):
 Calcium silicate hydrate (C-S-H) ~46
 Portlandite Ca(OH)2 ~18
 Calcium aluminates  (AFt, AFm) ~17
 Hydrotalcite ~1.4
 CaCO3 ~1.9
 Minor phases Fe, Mn oxides <<1
 Non-hydrated clinker minerals ~15.6
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Motivation
Cementious waste
Cement (backfill, Liner HLW tunnel)
Clay – Cement interaction
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Case studies

 Co uptake mechanisms on hardened cement paste
– X-ray absorption spectroscopy (XAS) at the macro/micro/nano-scale

 Investigation of Mg-containing phases
– X-ray absorption near-edge spectroscopy (XANES)
– Ab initio calculations

 Alkali Silica Reaction (ASR)
– Micro-XRD



Interaction of Co with cement

Uptake of Co during the 
hydration of cement
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Co doped hydrated cement
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+Co solution
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Micro-XRF results

 µ-XRF: significant micro-scale 
heterogeneity

 Presence of small (≤30 µm) Co-rich 
hot spots (spot 1)

 Co-rich coatings (~10-50 µm thick) 
around some Ca-rich particles
(spot 2)

 Form of immobilized Co? 
 µ-XAS experiments at selected

Co-rich hot spots

Spatial resolution 5x5 µm

100 µm 100 µm

100 µm 100 µm

Vespa et al., 2007



Micro-XAS results
Spot 1 (hot spot)
 Co-O (~2.06 Å) & Co-Co (~3.16 Å)
 Characteristic for Co(II)-phases

Spot 2 (ring-like)
 Co-O (~1.90 Å) & Co-Co (~2.80 Å)
 Characteristic for Co(III)-phases

Bulk-XAS
 Co-O (~2.06 Å & ~1.90 Å) & Co-Co (~3.13 Å)
 Mixture of Co(II) & Co(III) phases 0 1 2 3 4 5 6 7 8

bulk
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 Formation of a predominant Co(II) phase in the overall matrix
 Different oxidation state at distinct regions



Summary of XAS results

Co(II):
- heterogeneous system with respect to:

 Co distribution

 oxidation state (2+/3+)

 speciation

- what kind of Co(II) and Co(III) phases formed?
 Co(II): Co(OH)2 or Co-phyllosilicate
 Co(III): CoOOH or Co-phyllomangate

 Nano scale is required 



Scanning transmission X-ray microscopy (STXM)

detector

scanned
sample

X-rays

zone plate
(Au or Ni on Si3N4) 

OSA

Si3N4
Window 100 nm thick
500 x 500 µm

He, air, or vacuum

Focal length 0.5 – 9 mm (energy dependent)
OSA –
Order Sorting Aperture

X-rays are focused on the sample by the zone plate, 
the sample is scanned, and the transmitted intensity 
is plotted as a function of sample position



STXM

Spatial resolution: ~25 nm

2-d spectromicroscopy using 
soft X-ray transmission

Energy range: 120-2160 eV

Energy resolution:
E/∆E=5000-7500

Si3N4 window “sandwich” sample 
packages for wet or radioactive 
samples

5 mmAmbient atmosphere or “purged”



Co(II)/Co(III) speciation in Co-doped cement
Co(II)/Si Co(III)/Mn
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Summary: Co(II) uptake by cement

 Co(II): Co(OH)2 and Co-phyllosilicate

 Co(III): CoOOH

 Co oxidation on a nano-level during cement hydration

 Decreased solubility of Co(III) vs. Co(II) phases in cement
-> increased retardation of Co(III) compared with Co(II)

100 µm

macro micro nano

7 mm



Cement-Clay (CI) interaction

NAGRA NTB 08-07



Multi-year field experiment (CI) at Mont Terri Rock Laboratory

OPA

Interface

cement

Thin section

Jenni et. al., 2014



Mg containing phase

All very similar to 
the references

Mg-poor region in the cement
Mg-rich region in the interface
Mg-poor region in clay

Shift of this oscillation to
higher energy similar to talc

Vespa et al., 2017/2018



Ab initio calculations of XANES spectra.

 M-S-H phases have a layered structure similar to talc
 Indication of the presence of a hydroxide layer similar to brucite

 Employment of FDMNES (Joly 2001)
- Crystal structures 
- Crystal symmetry
- Cluster size
- Crystallographic position



Alkali Silica Reaction (ASR)

vein with
ASR

product
ASR

product

PSI media release from 5th November 2015:
Structure of ”concrete disease” solved

Bridge constructed in 1969

• Dark cracks formed in bridges, dam walls and 
other structures made from concrete are 
caused by ASR (>400 structures in Switzerland 
(Merz et al., 2006)): Concrete cancer/disease

• Slow process which takes decades
• In the course of ASR, a material forms that

takes up more space than the original 
concrete and thus gradually cracks the 
concrete from within as the decades go by

• It was believed up to now that this material 
is a non-crystalline gel

Optical and SEM image of the ASR material



Not only bridges (e. g. Seabrook Nuclear Power Plant 2009-2019)

https://www.nrc.gov/reactors/operating/ops-experience/concrete-degradation.html
https://ceramics.org/ceramic-tech-today/construction/preventing-asr-
in-nuclear-reactor-radiation-shielding-concrete

https://www.nrc.gov/reactors/operating/ops-experience/concrete-degradation.html
https://ceramics.org/ceramic-tech-today/construction/preventing-asr-in-nuclear-reactor-radiation-shielding-concrete


Strength of micro-XRD
micro-XRD can be used:
• to assess the crystallinity of phases
• to determine the reactive minerals responsible for sorption
and precipitation processes

• to identify newly formed crystalline phases

Challenge: apply micro-
XRD to thin sections Usually on a glass 

support 25 x 45 
mm



Experimental setup: Microxas/SLS

Rotation stage

XY-table
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Micro-XRD on thin sections

Approach: Turning the sample as in 
classical single crystal diffraction

beam

rotation axis, 
~1 µm eccentricity

sample

Challenge: keep the probed crystal in the center of rotation



Approach

Series of 60-90
XRD pattern

Typical XRD pattern

Composite image

………



2D-1D
2d-image

 search within cryst. database
• Elemental compositionXRF or EDS

 crystal structure refinement
• No a priory information needed
• Time consuming, can be applied to 

unknown phases
10 15 20 25 30 352Θ

Experimental pattern
Ca(OH)2 Calcium Hydroxide (Portlan   
Ca2SiO4 Calcium Silicate (Larnite, s  
Ca3(SiO4) Calcium Silicate Oxide (00

1d-image

Dähn et al., 2014



Technical challenges
• sample preparation
e.g. need to avoid diffuse scattering and
absorption of x-rays in sample carrier, contrast in hardness, 
…
• sample handling and positioning in micro-beam; sample 
position has to remain stable 
• huge amount of collected data
e.g. profile line scan:
per data point: 1 rotational scan with ∆ϕ= 50º, angular increment: 0.5°
 100 frames totally 17 rotational scans along profile line  1700 
frames
area detector PILATUS 2M: 1475 x 1679px = 2’476’525px per frame
 totally 4.2 billion pixels recorded
 complete dataset: 17GB 

hole



Comparison of different locations (1 x 1µm2 beam size)
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Rietveld refinement
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Rietveld refinement identified the so far unknown material as a layered sheet-
silicate mineral similar to the mountainite family 
Understanding the structure of ASR can help to improve the durability of cement 
based  construction materials

Dähn et al., 2016



Conclusions

 Synergy of synchrotron-based investigations from macro to nano scale & ab initio 
calculations are a powerful tool for material & environmental sciences to gain: 

 Overall understanding of radioactive elements behaviour

 Detailed mineralogical information and characterization of:
– newly-formed phases
– metal complexes formed at the mineral surface

 Results can help to reduce conservatism in performance assessment 

 System understanding gives strong public credibility
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