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Synchrotron light sources (~50 worldwide)
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Swiss Light Source
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Synchrotron radiation
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Cement hydration

Sulfate-resisting cement: CEM I 52.5 N HTS
heterogeneous material & highly alkaline (pH>12.5)
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Calcium silicate hydrate (C-S-H) ~46 '\m ¥
Portlandite Ca(OH), ~18

Calcium aluminates (AFt, AFm) ~17

Hydrotalcite ~1.4 ' Alite ' «
CaCoO, ~1.9 e~

Minor phases Fe, Mn oxides <<1
Non-hydrated clinker minerals ~15.6
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Motivation
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Case studies

e Co uptake mechanisms on hardened cement paste
— X-ray absorption spectroscopy (XAS) at the macro/micro/nano-scale

e Investigation of Mg-containing phases
— X-ray absorption near-edge spectroscopy (XANES)

— Ab initio calculations

e Alkali Silica Reaction (ASR)
— Micro-XRD
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Interaction of Co with cement

Uptake of Co during the
hydration of cement

w/c = 0.4

i hydration time

— | Non- | 30 days
- hydratec
Co(NO;), + H,0O cement
0.3 M O
pH ~5 /)
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Co doped hydrated cement

Cement Hydration .~ € %22 Co doped

+Co solution — hydrated
_ cement

dry, impregnate, cut, polish ‘ dry, grind

Thin sections & Hydrated
of hYdrated cement
cement 1 powder

u-XRF/XAS Bulk-XAS/STXM
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Micro-XRF results

Spatial resolution 5x5 um

» Form of immobilized Co?
> u-XAS experiments at selected
Co-rich hot spots

» u-XRF: significant micro-scale
heterogeneity

» Presence of small (30 um) Co-rich
hot spots (spot 1)

» Co-rich coatings (~10-50 um thick)
around some Ca-rich particles
(spot 2)

PAUL SCHERRER INSTITUT Vespa et al., 2007
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Micro-XAS results

Spot 1 (hot spot)
» Co-0 (~2.06 A) & Co-Co (~3.16 R)
» Characteristic for Co(II)-phases
Spot 2 (ring-like)
» Co-0 (~1.90 A) & Co-Co (~2.80 R)
» Characteristic for Co(III)-phases

Bulk-XAS

> Co-O (~2.06 A & ~1.90 A) & Co-Co (~3.13 A)
> Mixture of Co(II) & Co(III) phases

FT(K*(K))

=» Formation of a predominant Co(II) phase in the overall matrix

=» Different oxidation state at distinct regions
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Summary of XAS results

Co(II):
- heterogeneous system with respect to:

= Co distribution
= oxidation state (2+/3+)
= speciation

- what kind of Co(II) and Co(III) phases formed?
= Co(II): Co(OH), or Co-phyllosilicate
= Co(IIT): CoOOH or Co-phyllomangate

- Nano scale is required
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Scanning transmission X-ray microscopy (STXM)
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He, air, or vacuum zone plate Si,N,
scanned (Au or Ni on Si,N,) Window 100 nm thick
sample 500 x 500 pm
detector ‘
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Focal length 0.5 — 9 mm (energy dependent)
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Order Sorting Aperture

X-rays are focused on the sample by the zone plate,
the sample is scanned, and the transmitted intensity
is plotted as a function of sample position
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STXM
2-d spectromicroscopy using

soft X-ray transmission /\l A
Frrreers 1l

Spatial resolution: ~25 nm ’\
BERKELEY LAB

Energy range: 120-2160 eV

Energy resolution:
E/AE=5000-7500

Ambient atmosphere or “purged”

SisN, window “sandwich” sample
packages for wet or radioactive
samples
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Co(ll)/Co(lll) speciation in Co-doped cement
/Mn

/Si

Absorption (a.u.)
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Summary: Co(ll) uptake by cement
macro micro

B e

» Co(II): Co(OH), and Co-phyllosilicate

» Co(III): CoOOH

=» Co oxidation on a nano-level during cement hydration

=» Decreased solubility of Co(III) vs. Co(II) phases in cement

-> increased retardation of Co(III) compared with Co(1I)
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Cement-Clay (CI) interaction

NAGRA NTB 08-07
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Multi-year field experiment (Cl) at Mont Terri Rock Laboratory

Thin section
Interface

Sampling
borehole

Surface

/

Cl1 Experiment: borehole and monitoring set-up
Vertical section: parallel to bedding strike

Back wall of HE-D

Esdred lowpH (ca. 1.5 m)

Jenni et. al., 2014
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Mg containing phase

» Mg-poor region in the cement
» Mg-rich region in the interface
» Mg-poor region in clay

All very similar to
the references

nermalized xp(E)
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Ab initio calculations of XANES spectra.

— MSH 1

—wsos » Employment of FDMNES (Joly 2001)
B - Crystal structures

- Crystal symmetry
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» M-S-H phases have a layered structure similar to talc
> Indication of the presence of a hydroxide layer similar to brucite
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» Dark cracks formed in bridges, dam walls and
Alkali Silica Reaction (ASR) other structures made from concrete are

Bridge constructed in 1969

caused by ASR (>400 structures in Switzerland
(Merz et al., 2006)): Concrete cancer/disease

» Slow process which takes decades

* |n the course of ASR, a material forms that
takes up more space than the original
concrete and thus gradually cracks the
concrete from within as the decades go by

» |t was believed up to now that this material
is a non-crystalline gel

PSI| media release from 5t November 2015: o o v
Structure of "concrete disease” solved EUHOSF‘IF (= 201 9



Not only bridges (e. g. Seabrook Nuclear Power Plant 2009-2019)

Membership  Meetings & Events  Publications  Professional Resources  GetInvolved — About

Preventing ASR in nuclear reactor
radiation shielding concrete

— e » REPORT
Protecting People and the Environment : A SAFETY CONCERN

NUCLEAR RADIOACTIVE NUCLEAR PUBLIC MEETINGS & NRC ABOUT
REACTORS MATERIALS WASTE SECURITY INVOLVEMENT LIBRARY NRC

NOVEMBER 27, 2018 | LISA MCDONALD

PRINT s

<% REACTOR OPERATIONAL EXPERIENCE Home > Nuclear Reactors > Operating Reactors > Operational Experience > Special NRC Oversight: Concrete Deg i Subscribe to

Access Authorization Programs Ceramic Tech Toduy

Special NRC Oversight at Seabrook Nuclear Power o
- Plant: Concrete Degradation and glass news.

N
Concrete Degradation at Seabro In 2009, NextEra Energy Seabrook, LLC (NextEra) realized that the RELATED INFORMATION = ame
Nuclear Power Plant intrusion of moisture into sections of walls in certain below-grade " : i
Report on Aging of Nuclear [H 2

structures at the Seabrook nuclear power plant, in Seabrook, N.H.,

Baffle-Former Bolts

Davis-Besse Reactor Vessel Head

s Power Plant Reinforced Email
Degradation could cause the degradation of some of the concrete. The NRC and Thmmaie e
NextEra confirmed in 2010 that the degradation at Seabrook is NUREG-CR-6424 '

Fire Protection Program

caused by alkali silica reaction, or ASR. The result of this reaction is a
Fitness-for-Duty Programs gel, which can expand and cause micro-cracks in the concrete.
Groundwater Contamination (Tritium) at Graphics detailing the chemical reaction and the expansive gel can be m
Nuclear Plants viewed on slide 9 [ of the May 10, 2012 presentation "Seabrook

Station Safety in Light of the Alkali-Silica Reaction Occurring in Plant
Structures A."

Human Factors

Japan Lessons Learned

Subsequently, NextEra identified that the cumulative effect of ASR- Recent Posts

Open Phase Conditions in Electric Power

Systems induced micro-cracking has led to larger macro-cracking (bulk

. . ; ; ; « Achieving high-temperature

expansion) and the displacement of some concrete walls. [Image above] The Seabrook Station Nuclear Power Plant is the only commercial huclear
Operating Experience Smart Sample plant known to suffer from an alkali-silica reaction in the United States. ASR prevention Superconduct\vxtyfth?
(OpESS) Program NextEra has determined that the structures affected by ASR can continue to perform their safety functions is an important concern when constructing nuclear plants. Credit: Jim Richmond, CC BY- ;Dlenﬂil\ thsuperhy‘dgdeg
- " P . q * Repair tooth enamel

Operating Reactor Maintenance —the regulatory term for this is that they are "operable but degraded and nonconforming.” The basis for SA20 gmpwmg it Y
EiEcienes continued operability includes confirmatory engineering design reviews using computer-based finite element

) . . h ) . o Ceramic and glass business
Point Beach 2003-2006 - analysis and detailed reviews of structural design calculations that demonstrate that sufficient safety e et The waan
Multiple/Repetitive Degraded Cornerstone i i 1 i - i
Column mérglns remain based upon field measurements and/or bounding (Wors.t Case.) ASR degradatlfnn value.sA Though nuclear power currently faces an uncertain future in the United States, other « Video: Creating pencils from

) Reinforced concrete structural design margins for Seabrook were established in accordance with American countries—like China and Russia—are capitalizing on the growing global nuclear power SErteh

Post-Fukushima Safety Enhancements Concrete Institute (ACI) Code 318-1971 and ensure that the as-built (desian) structural capacity exceeds market. As countries prepare for the construction of sophisticated nuclear reactors, plant « Other materials stories that

designers turn to a familiar material to safeguard against failure: concrete. may be of interest

Nuclear power reactors are typically lined with concrete, which in turn are housed in a
larger steel containment vessel and then surrounded by an outer concrete structure. Unlike
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https://www.nrc.gov/reactors/operating/ops-experience/concrete-degradation.html
https://ceramics.org/ceramic-tech-today/construction/preventing-asr-in-nuclear-reactor-radiation-shielding-concrete

Strength of micro-XRD
micro-XRD can be used:

» to assess the crystallinity of phases

* to determine the reactive minerals responsible for sorption
and precipitation processes

» to identify newly formed crystalline phases

GFq

Challenge: apply micro-
XRD to thin sections

Usually on a glass
support 25 x 45

?/ L mm
B5 — EUROSAFE | 2019




Experimental setup: Microxas/SLS

PILATUS 2M

4
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Micro-XRD on thin sections

Approach: Turning the sample as in
classical single crystal diffraction

rotation axis,
~1 um eccentricity

sample

beam

Challenge: keep the probed crystal in the center of rotation

PAUL SCHERRER INSTITUT

= EUROSAFE | 2019




Approach

Series of 60-90 Composite image
XRD pattern
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2D-1D

Experimental pattern

Ca(OH)2 Calcium Hydroxide
Ca2SiO4 Calcium Silicate
Ca3(SiO4) Calcium Silicate Oxide

-‘hd-lmqgé

= ';-_
S L aekE - ol
> crystal structure refinement b 1 i LR |
» No a priory information needed et -
- Time consuming, can be applied to 10 15 20,525 30 35

unknown phases
P » search within cryst. database

UL scnertes snion « Elemental composition>XRF or EDS
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Technical challenges

- sample preparation
e.g. need to avoid diffuse scattering and ;
absorption of x-rays in sample carrier, contrast in hardness, |

- sample handling and positioning in micro-beam; sample
position has to remain stable

- huge amount of collected data

e.qg. profile line scan:

per data point: 1 rotational scan with Ap= 50°, angular increment: 0.5°
- 100 frames totally 17 rotational scans along profile line = 1700
frames

area detector PILATUS 2M: 1475 x 1679px = 2’476°525px per frame
—> totally 4.2 billion pixels recorded

- complete dataset: 17GB
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Comparison of different locations (1 x 1um? beam size)
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Rietveld refinement
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\‘ [(Si,A|)20048] - Iayer

@ «

@ 08K+0.2Na
¢ 0.17Na

@ 1Ca

e 0.8Ca
e 0.2and0.26 Ca

e 0.11Fe

¢ H20 (Ow)

e non-shared O-vertices
of the [(Si,Al)O4] tetrahedra

[(Si,Al)Og4] tetrahedron

Rietveld refinement identified the so far unknown material as a layered sheet-
silicate mineral similar to the mountainite family

Understanding the structure of ASR can help to improve the durability of cement
based construction materials
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Conclusions

e Synergy of synchrotron-based investigations from macro to nano scale & ab initio
calculations are a powerful tool for material & environmental sciences to gain:

e Overall understanding of radioactive elements behaviour

e Detailed mineralogical information and characterization of:
- newly-formed phases

—- metal complexes formed at the mineral surface
e Results can help to reduce conservatism in performance assessment

e System understanding gives strong public credibility
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