Muriel Rocher, François Marsal, Didier Gay, Marc Philippe, Delphine Pellegrini

International overview of investigated alternatives to deep geological disposal of high-level waste and long-lived intermediate-level waste

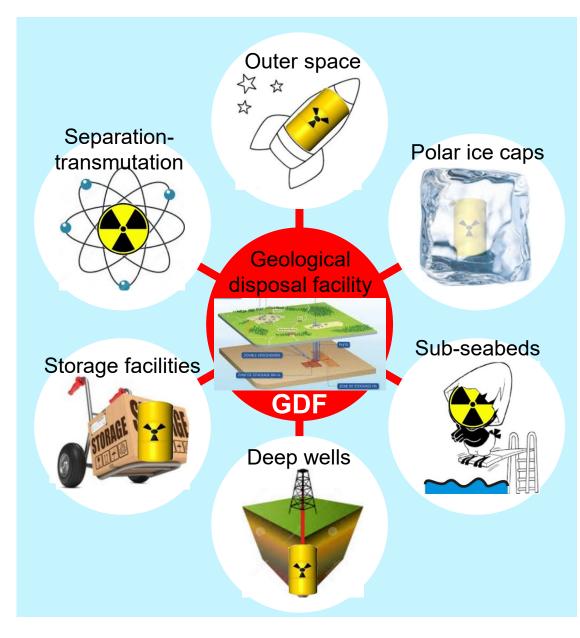
Introduction

 Request of National Commission for Public Debate to prepare the public debate on the national plan for radioactive materials and waste (PNGMDR, 2019-2021)

pngmdr.debatpublic.fr

- Literature review conducted by IRSN, based on public documents from
 - international agencies (IAEA, OECD/NEA in particular)
 - national institutional organizations
 - scientific journals,
 - non-governmental organisations...
- Not intended to be exhaustive and to provide IRSN's point of view, but
 - historical and scientific keys to understand in which context the different considered options for managing HLW appeared and were explored
 - technical and societal questionings associated to these options

Complete IRSN report (French or English) on <u>www.irsn.fr</u>



6 families of alternatives identified

(for HLW and IL-LLW)

Launching into outer space

• Permanently rid the Earth of the most harmful radioactive waste

- Launching beyond the atmosphere, using spacecraft
- Several ultimate destinations were considered, including the sun

The the 1970s: studied by NASA (United States)

- Only for most harmful waste that would result from the envisioned reprocessing of SF
- waste package must withstand any situation of atmospheric transfer or falling (thermal and mechanical resistance), while remaining extremely light
- launching into a low Earth orbit on board of a space shuttle, then transport using a space tug (or a heavy launcher) to the Moon, in orbit around the sun, etc.

Also USSR & Kazakhstan in the 1980s; US researchers in space technology...

\ominus Abandoned because:

Excessively high cost

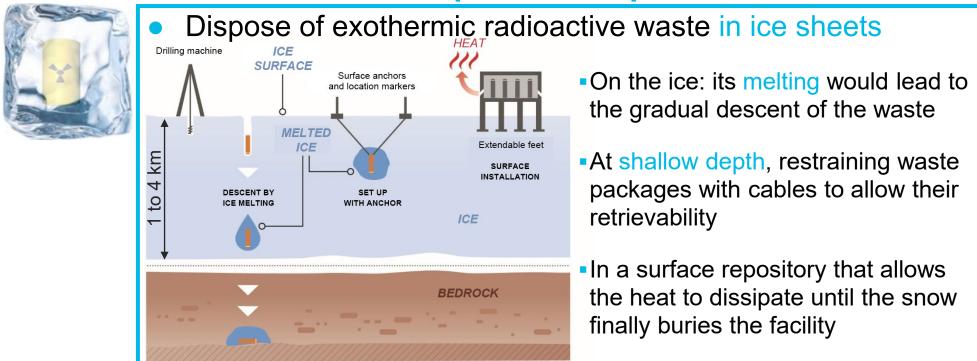
Requirements on waste packages

perspectives | Political and legal aspect

Accidents of the space shuttles Challenger in 1986 and Columbia in 2003...

EUROSAFE 2019

Option not specifically studied in France


Options explored around the world

Obstacles

faced/

Principles 🛱 🌣

Immobilize waste in polar ice caps

Studied by the United States until the 1980s

\ominus dropped out because:

Not envisioned in France

- presence of salted pockets trapped in the ice \rightarrow risk of extremely rapid corrosion of steels
- Stability problems associated with the movement of ice on the bedrock
- Impossibility to rest assured that the ice caps will remain for 100 000s years
- 1959 Antarctic Treaty; the Greenland icecap belongs to Denmark...

Sub-seabed disposal (1)

- Operated from a boat or an offshore structure, by means of **boreholes** or "**penetrators**"
- Disposal in « deep seabeds » (>5000m water and fast sedimentation)
- On the seabed \rightarrow to be covered by sedimentation
- Buried in the unconsolidated (soft) sediments
- Placed into boreholes drilled in basement rock

Penetration tests of mock containers in sediments

→ Participation of France

.

Free

0-

50 m

(min.)

4 500 m

200 m

400-

SEDIMENTS

BASALT .

600 m

200 m

No technical work nor reflection followed after 1986

Various studies on heat transfer, diffusive transport, radiological impact...

⊖ After USA withdrawal in 1986 + becoming inconsistent with changes in Maritime Laws (1972 London Convention, 1996 Protocol...) → progressively given up

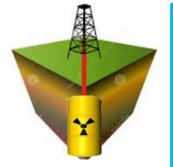
Sub-seabed disposal (2)

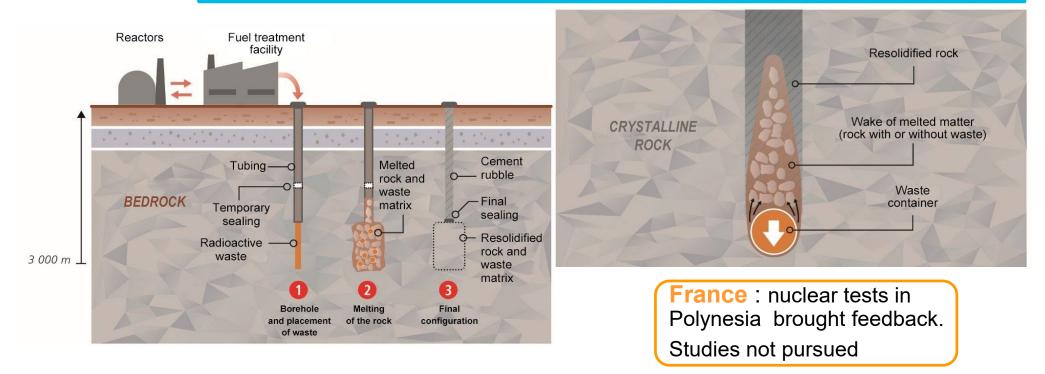
Phenomenon just known in 1960s → better understood in 1970s (USA, United Kingdom, Canada…)
A Not envisioned by France

\ominus Discounted because:

Soft sediments on the crust tend to stay at surface (accretionary prism)

Very slow process: 1 to 10 centimetres by year

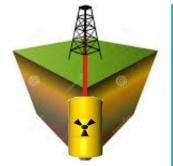

Earthquakes, explosive volcanisme



Borehole disposal (1)

- Waste placed in the bottom of deep rock excavations
 - As for an underground disposal facility, aims at isolating waste from the natural phenomena at surface, from humans and at preventing the dispersion of their contents into the environment ...
 - ...but operated from the surface and depth may be much higher

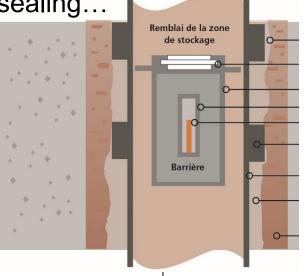
1) Immobilisation of exothermic waste by melting of the rock


⊖ Concepts aiming at melting the host rock were rejected

EUROSAFE 2019

Borehole disposal (2)

- Waste placed in the bottom of deep rock excavations
 - As for an underground disposal facility, aims at isolating waste from the natural phenomena at surface, from humans and at preventing the dispersion of their contents into the environment ...
 - ...but operated from the surface and depth may be much higher


) Immobilisation of exothermic waste by **melting of the rock**

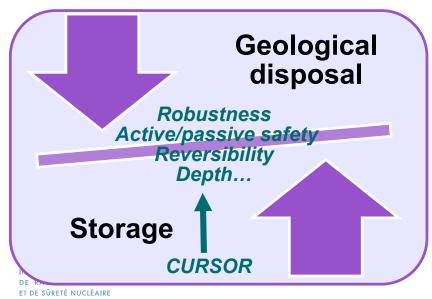
2) Stacking of packaged **solid waste** in boreholes

Need for additional knowledge: digging at great depth, handling, sealing...

- ✓ Project of scientific borehole 5 000 m (DBFT) in USA
- Feedback /shallower boreholes for small volumes of waste /DSS (IAEA Guide, 2009)
- Scientific watch by UK, Sweden, Belgium, Germany, S Korea, China, Australia...

Not studied in France

Waste storage



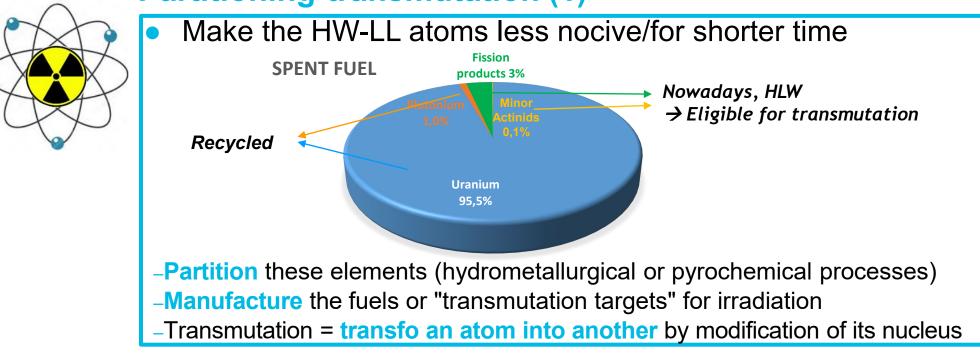
- Emplace waste in a safe location for a fixed duration
- Remove it *≠* disposal is definitive
- Active safety : need human action ≠ disposal post-closure safety is passive
- 1) « Long-term storage » : a few hundred years

2) « Permanent storage » : likely to remain intact over up to 100 000s y

⇒ giving the choice *versus* transfer the responsibility to future generations

- Examined until 2004-2006 by United Kingdom, Canada, Switzerland, France...
- IAEA conference in 2003

In France :


- CEA studies 1991-2005 /« Bataille » Law:
- Concepts at surface and shallow depth, 300 y
- Underground store /NGO, indep. experts...
- Convertible into GDF
- Interim solution (shallow surface in side of granite hill)+ further researches...

Risk of abandon during thermal phase (exothermic waste)

✓ Interim solution in Italy, The Netherlands...

Partitioning-transmutation (1)

⇒ Need for specific new nuclear facilities

Transmutation of **Fission Products**

Image simple capture of a "slow" neutron (those produced in almost all NPPs operated worldwide) → Tests carried out

In France : CEA studies 1991-2005 (« Bataille » Law)

⊖ Complex partitioning (caesium 133), low transmutation rates (technetium 99), safety of reactors (iodine-129)... → studies not pursued

Partitioning-transmutation (2)

Transmutation of Minor actinids

- = capture of a « **fast** » **neutron** then fission
- ⇒ Several ways to generate fast neutrons :

Fast Neutron Reactors = FNR

- Numerous FNR were operated by the past
- ✓4 presently operated (Russia, India, China) + several projects...
- For transmuting accumulated MA: need for a new fleet of reactors, operated for a long duration
- Dedicated system « accelerator + reactor » = ADS
 - Researches from various teams in the world ('80s-'90s)
 - ✓ Projects in China, South Korea, India, Belgium (Myrrha)...
 - Multi-recycling needed (repeated passes in reactor)
- Dedicated system « laser + reactor »
 - ✓Team Pr. G. Mourou (France) : D ion accelerator driven by a laser → fusion D-D → fast neutrons → Molten salt reactor
 - **Technological locks** to undo at each step as well as for their combination

⇒ Transmutation in « new » reactors = Basic research

EUROSAFE 2019

- Feedback Phénix & Superphénix
- ASTRID project (FNR-Na)
- Participation to the Myrrha project

Thanks for your attention!

\$3

5

3