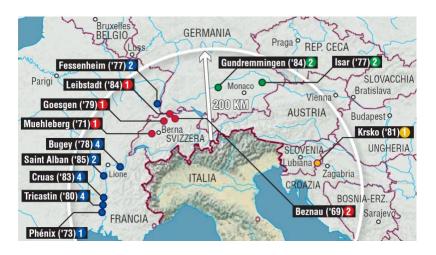
Antonio Guglielmelli – Federico Rocchi

Statistical methodology for the evaluation of the radiological impact over the Italian territory of a severe accident at Krško NPP

Summary

- Motivations
- Introduction
- Methods
- Tools
- Results
 - Source Term evaluation
 - Statistical analysis
 - Deterministic analysis
 - Forecast alert methodology



General Motivations

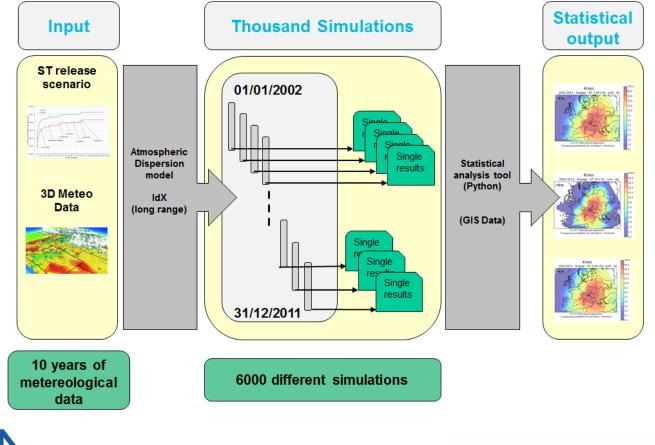
- Situation: Italy is surronded, at less than 200 km from it's borders, by 25 foreign active NPPs;
- Needs: to improve Italian skills, methods and tools in the field of EP&R;
- Aim: to be able to perform «preliminary» assessment of the radiological impact of a severe accident on Italy;

Country	NPPs	Reactor types	Distance from Italian borders
[-]	[-]	[-]	[km]
France	16	PWR	~ 120 – 180
Switzerland	5	PWR - BWR	~ 100 – 130
Germany	4	PWR - BWR	~ 170 – 180
Slovenia	1	PWR	~ 130
TOTAL	26	PWR - BWR	~ 100 – 180

Introduction

- Krško: is one of the closest NPPs to the Italian territory;
- Krško accident: it would most likely have an impact on Italy;
- Goal: to evaluate the radiological impact on Italy:
 - <u>Methods</u>: Statistical analysis and deterministic study;
 - Tools: French IRSN's and U.S.NRC's codes;
 - <u>Results</u>: Statistical and deterministic maps;
- Alert methodology: Forecast alert methods are also proposed
 - <u>Methods</u>: EURDEP stations network;
 - <u>Tools</u>: RASCAL 4.3 code;
 - <u>Results</u>: Gamma dose-rate values some hours before the event;

Statistical approach – methods

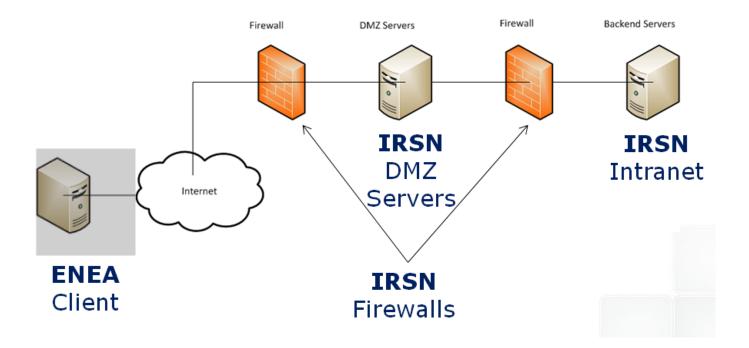

- Statistical method:
 - Several hundred simulations of the same severe accident at different times and weather conditions, using real meteo data;
 - The outcomes are statistically averaged to obtain a threshold trespassing probabilistic distribution map;
 - Statistical methods cannot provide a real-time answer to a severe accident, but are the most powerful tools to give indications for the countermeasures to be taken and long-term recovery phase actions;
 - The quantity evaluated is the trespassing probability map of Cs-137 total ground deposition threshold at the end of simulation;

Statistical approach – methods

 Configuration: make 600 simulations per year, over 10 years of real meteo data (6000 different simulations);

Italian National Agency for New Technologies Energy and Sustainable Economic Development

Statistical approach – codes


- IdX: code for atmospheric transport simulations:
 - IdX is a French code developed by the IRSN for which ENEA FSN-SICNUC has signed a bilateral cooperation agreement;
 - IdX is included in IRSN's C3X calculation platform dedicated to evaluate EP&R on a regional scale;
 - The models implemented in IdX have been validated against the European Tracer Experiment (ETEX), the Algeciras release, and the Chernobyl accident;
- consX: code for the assessment of the projected doses;
- Python: language used for output data post-processing.

Statistical approach – codes

 Hardware: User interface is installed in Bologna (Italy); IdX and consX are resident and run, for security reasons, at IRSN on a DMZ dedicated server.

Statistical approach – codes output

Italian National Agency for New Technologies **Energy and Sustainable Economic Development**

Statistical approach – parameters

- Metereological data:
 - Meteo France (2002-2011 @ Arpege);
- ST dynamics:
 - Puff (1 hours) and Unit (3 days);
- ST emissions:

Arpege @ 50 km

- 5.0E+15, 1.0E+16, 5.0E+16 Bq (only Cs-137);
- Atmospheric transport:
 - Four days (enough to study the impact over Italy);
- Simulations:
 - Two emissions/day, for a total of 6000 simulations.

Statistical approach – physical quantities

- IdX results have been used to evaluate, with consX, two radiologically-relevant derived quantities:
 - Total ground deposition [Bq/m²];
 - Time-integrated air concentration [Bq.s/m³];
- In a preliminarly phase, the simulations were conducted with only one isotope: ¹³⁷Cs;
- The contribution of the other isotopes have been evaluated by means of specific ST isotopic ratios information;
- ST isotopic ratios are those evaluated by ENEA for the Fukushima accident;

Statistical approach – threshold limit

- Due to the Krško NPP distance from Italy, the long-term effect of land contamination was used as physical limit;
- The lowest land contamination levels of the Italian legislation are those related to leaf vegetables;
- These levels are used for the evaluation of contamination thresholds;

Isotope	Max. Contamination Level – MCL [Bq/m ²]		
⁸⁹ Sr	1.5E+03		
⁹⁰ Sr	1.5E+03		
131	4.0E+03		
¹³⁴ Cs	2.5E+03		
¹³⁷ Cs	2.5E+03		
²³⁹ Pu	1.6E+02		

Maximum contamination levels for leaf vegetables

Statistical approach – threshold limit

• The <u>«equivalent»</u> threshold contamination level was imposed with the following expression:

$$\sum_{i=1}^{N} \frac{CL_{i}}{MCL_{i}} = 1 \quad \begin{cases} CL_{i} = initial \ contamination \ level \\ MCL_{i} = maximum \ contamination \ level \end{cases} \quad X_{i} = \frac{CL_{i}}{CL_{137_{CS}}}$$

• It's possible to reduce the contaminaton threshold to a single-parameter (Xi) expression:

$$\sum_{i=1}^{N} \frac{X_i C L_{137_{CS}}}{M C L_i} = C L_{137_{CS}} \sum_{i=1}^{N} \frac{X_i}{M C L_i} = 1 \implies C L_{137_{CS}} \Big|_{lim} = \frac{1}{\sum_{i=1}^{n} \frac{X_i}{M C L_i}}$$

Statistical approach – threshold limit

• The coefficients Xi are evaluated assuming that the transport is the same for each isotope, and taking care of decay, as:

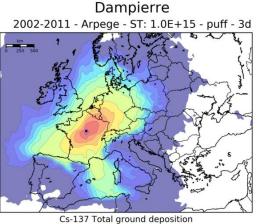
$$X_i \cong \frac{ST_i \cdot \beta_i \cdot k_i}{ST_{137_{Cs}} \cdot \beta_{137_{Cs}} \cdot k_{137_{Cs}}} = \frac{ST_i}{ST_{137_{Cs}}} \cdot k_i \quad \begin{cases} \beta_i = \beta_{137_{Cs}} & \text{Same transport} \\ k_{137_{Cs}} = 1 & \text{Long decay time} \end{cases}$$

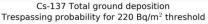
 Taking into account the decay time for each isotopes, an «equivalent» 137Cs threshold was determined.

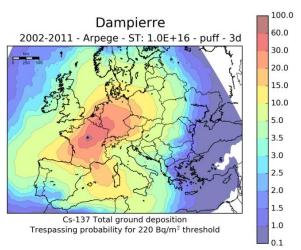
lectore	MCL	ST	K _i	X _i
Isotope	[Bq/m2]	[Bq]	[-]	[-]
⁸⁹ Sr	1.5E+03	4.5E16	1	2.1
⁹⁰ Sr	1.5E+03	3.4E15	1	0.2
131	4.0E+03	2.0E17	0.71	6.8
¹³⁴ Cs	2.5E+03	3.1E16	1	1.5
¹³⁷ Cs	2.5E+03	2.1E16	1	1.0

Statistical approach – physical limits data & results

• The «equivalent» 137Cs ground deposition threshold, taking in account the decay data, was evaluated:


 $(CL_{137Cs})_{lim} = 2.4E + 02 [Bq/m^2]$ (Fukushima case: 3 Units)


Using one unit, the ground deposition threshold is lowered up to:


 $(CL_{137Cs})_{lim} = 2.2E + 02 [Bq/m^2]$

(Fukushima case: 1 Units)

Achievable results:

Statistical analysis - results

- ST dynamics of the Unit type results in a major near-range and minor farrange total ground deposition;
- In some Italian areas the threshold limit is exceeded with a probability higher than 50%;

100.0

90.0

80.0

70.0

60.0

50.0

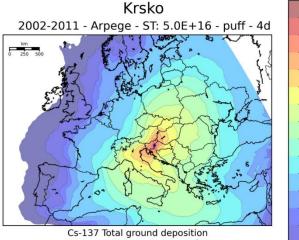
40.0

30.0

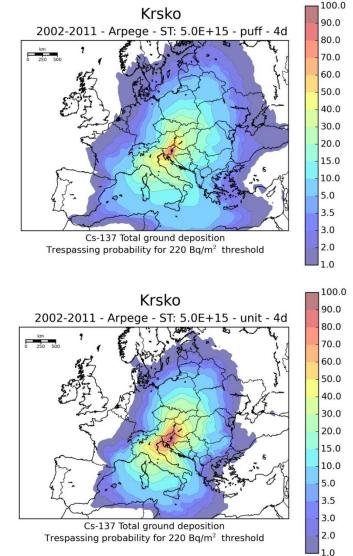
20.0

15.0

10.0


5.0

3.5


3.0

2.0

1.0

Trespassing probability for 220 Bq/m² threshold

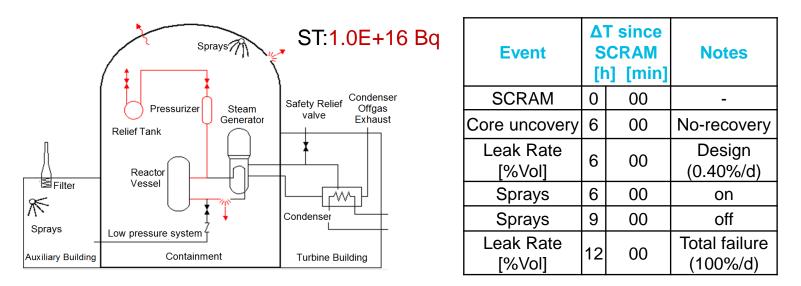
- RASCAL 4.3 has been used to evaluate the Krško Source Term and some detailed dose maps on the Italian territory;
- RASCAL 4.3 is a fast-running tool used by the Protective Measures Team in the U.S. NRC's Operation Center;
- RASCAL aims to provide a rapid assessment of an accident and help to make decisions on countermeasures;
- RASCAL primary module here used is the «Source Term to Dose» which consists of four sub-modules: Eventy type, Event Location, Source Term, Release path and Metereology;

- Event type module:
 - define the type of plant (NPP, Spent Fuel, Fuel Cycle, UF6, Criticality Event) from which the radioactive release comes; the choice has been NPP;
- Event Location module:
 - define the geographical location of the NPP and all the necessary plant data to evaluate the Activity Inventory;
 - U.S. LWR data are the only ones already included in the internal RASCAL 4.3 database;
 - The choice of Event Location is dictated by the identification of a *surrogate NPP*.

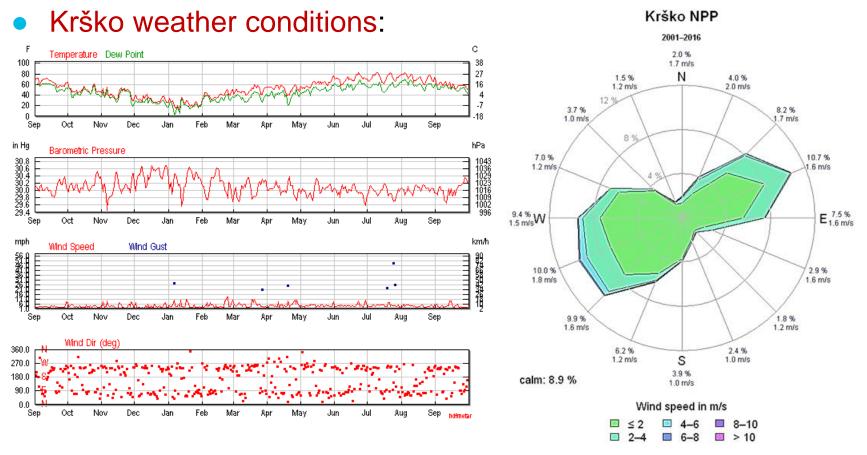
• Surrogate NPP:

- plant already available in RASCAL internal database which differs from the real plant only as regard <u>actual</u> <u>power</u> and <u>actual core average</u> <u>burnup;</u>
- This means to find among the U.S. fleet a Krško-like (i.e. Westinghouse 2-loops) NPP;
- The severe accident analysis has been performed with the U1 of Point Beach Station (PB-U1) which is the youngest U.S. Westinghouse 2-loop NPP currently in operation;

Parameters	Data			
Reactor Type	PWR			
Ther. power limit (MWth)	1800			
Reactor vendor	Westinghouse			
Reactor vendor	2-loop			
Operating license issued	10/05/1970			
Renewed license issued	12/22/2005			
Containment				
Containment type	PWR, Dry			
Containment volume	28317 m ³			
Design pressure	4.137E+05 Pa			
Steam Generator				
SG type	U-Tube			
SG water mass	42184 kg			
Fuel				
Number of FA	121			
Number FR per assembly	235 (16x16)			
Krško-like parameters				
Power (MWth)	1994			
Core average burn-up (MWd/MTU)	22014			



- Source Term module:
 - Define the calculation route to evaluate the time-dependent ST;
 - LOCA is the chosen Source Term's sub-module; it's based on reactor conditions and on the procedures described in NUREG-1228 and NUREG-1945;
 - LOCA allows to specify the SCRAM, the core uncovery and recovery times and methods used for core damage estimation; (cladding failure, core melt, vessel melt through);
 - In the present work, no-recovery option has been used.



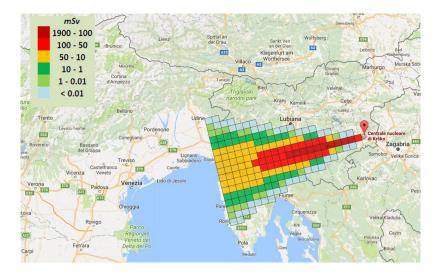
- *Release path* module:
 - Defines the release pathway of the radionuclide inventory to the environment and the time-dependent emission events;

The sequence is one of the most severe accident scenarios (i.e. high-level ST @ total failure after only 12 hours since SCRAM).

Tavg = 11 °C; Main wind directions = from ENE or from WSW

- Meteorological module
 - Define the parametric conditions for the transport calculation;
 - Gaussian plume model (TADPLUME) is used near the release point; a lagrangian puff model (TADPUFF) is instead used at longer distances;
 - The transport time has been set to 96 hours since release start;

Туре	Name	Description					
Predefined data	Standard	Class Stability	Wind speed [m/s]	Precipitation	Temp. [°C]	Relative humidity [%]	Orography
		D	1.8	No	21	50	Flat terrain


 This atmospheric dataset is a good approximation of the oneyear average Krško weather conditions.

Deterministic approach – Results

- Determistic results:
 - RASCAL evaluates the time integrated air concentration on a 8x8 km unit cells map for a distance of 160 km from the release point;
 - The results show the TEDE and Cloudshine dose maps;

mSv 60-30 30-5 Rru Klagenfurt am 5-1 Villaco 1-0.1 A2 < 0.1 Kranj Kamni Pordenone Zagabria Veron Ferrara

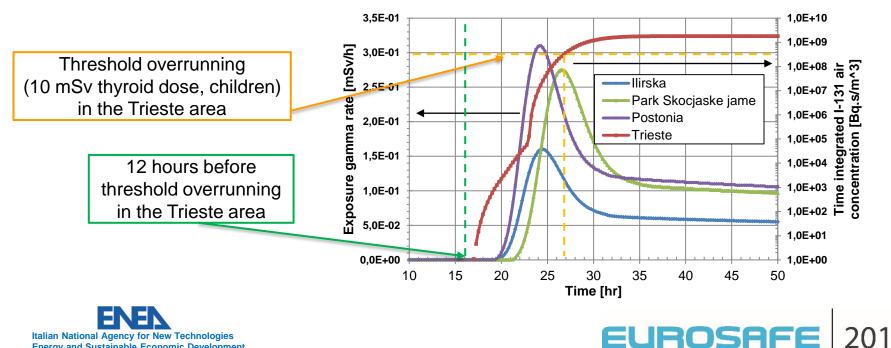

TEDE dose map (ST 1E+16 Bq, std. meteorology) Cloudshine dose map (ST 1E+16 Bq, std. meteorology)

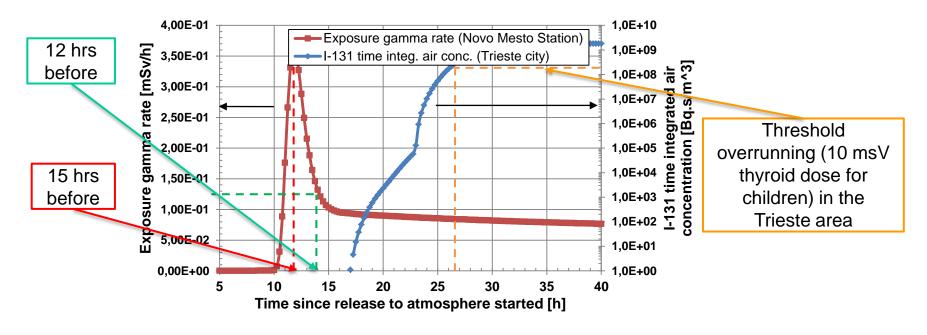
- The TEDE map suggests a possible overrunning of the emergency limits in the Italian territory;
- The idea is to use the gamma rate values (EURDEP stations) to get an alert notice of at least 12 hours since the event;

Gamma	Distance from		
stations	Trieste [km]		
Park S. J.	17		
Postojna	36		
Ilirska Bistrica	38		
Parg	66		
Novo Mesto	110		

EURDEP stations whitin the RASCAL simulation domain

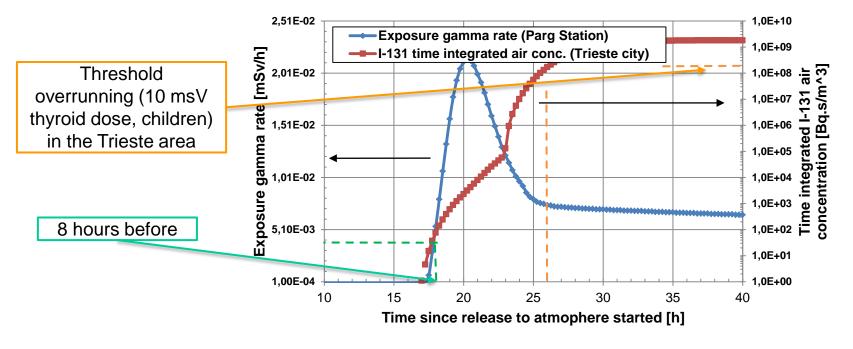
- Two alert criteria:
 - <u>«Threshold value</u>»: a threshold value reached in a specific Italian area as alert criteria for the gamma dose-rate stations;
 - Thresholds criteria is ideally applicable only if the radiological quantity to evaluate is the same measured by the stations;
 - <u>«Warning time</u>»: to fix a specific warning time and evaluate the measurements that a given gamma dose-rate station should give 12 hours before the threshold overrunning in Italy;
 - The method is effective in the hypothesis of weak variance of the atmospheric conditions during the 96 hours of the transport.




«Warning time» methodology:

Energy and Sustainable Economic Development

- EURDEP stations at less than 40 km from Trieste;
- The stations background values are of the order of 100 nSv/h;
- The stations cannot provide a radiological alert more than 3-4 hours in advance from the event in Trieste;



- «Warning time» methodology:
 - EURDEP stations at more than 40 km from Trieste;
 - Novo Mesto station can give an alert 12 hours in advance;
 - If the indicator is the peak value, the alert time can reach 15 hours;

- «Warning time» methodology:
 - **Parg** allows an alert indication no more than 8 hours in advance;
 - Parg could be used to confirm an alert signal of Novo Mesto or as a redundant alert station.

Conclusions

- The statistical approach can provide a huge amount of information based on a reliable scientific process;
- An accident database constructed with this approach can be a reliable assessment tool for decision makers ;
- The analysis shows that in some north-eastern and central Italian areas there is a 50% likelihood of trespassing the «equivalent» Cs-137 threshold limit for leaf vegetables;
- A deterministic analysis on the Trieste district reveals that there may be a need to take countermeasures (iodine prophylaxis);
- The proposed alert methodology (EURDEP stations) shows that it is possible to get an alert notice 12 hours in advance with respect to a threshold overrunning in the Trieste district.

