F. Russo – C. Mommaert – T. van Dillen

Clearance of surface-contaminated objects from the controlled area of a nuclear facility:

Application of the SUDOQU methodology

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

- Introduction
- Objectives and methodology
- Results
- Benchmarking study
- Conclusions

- Introduction
- Objectives and methodology
- Results
- Benchmarking study
- Conclusions

Introduction – Context

- March, 2011: Fukushima nuclear accident
 - Possibly surface-contaminated consumer goods imported in Europe
 - Need for rapid screening and surface-contamination level assessment

Note: the picture is just for illustration purposes, and does not represent a ship concerned in the investigation

- Lack of robust dose-assessment models for members of the public
- RIVM develops the SUDOQU methodology

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

Introduction – SUDOQU methodology

Based on the assumption of a non-constant surface activity, influenced by removal (radioactive decay, resuspension, wipe-off) and deposition mechanisms

Introduction – Collaboration Bel V-RIVM

- Belgian Regulation: Lack of surface clearance levels
- Commonly used levels:
 - 0.4 Bq/cm² / 1 Bq/cm² (β - γ)
 - 0.04 Bq/cm² / 0.1 Bq/cm² (α)

- Objective of the collaboration
 - Use of SUDOQU for the derivation of nuclide-specific surface-clearance levels based on conservative scenarios for a Belgian context

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

- Introduction
- Objectives and methodology
- Results
- Benchmarking study
- Conclusions

Objectives and methodology

- Evaluation of the SUDOQU applicability for clearance calculations
- Deterministic dose calculations for exposure to a surface-contaminated office item: Bookcase

Geometry: *Circular shape* Dimensions: 6 m² Contamination: 1 Bq/cm² (only front panel) Receptor: Office worker (5 d/w, 8 h/d)

Objectives and methodology – Scenarios

Reference scenario

- External irradiation:
 - Distance = 3 m
- Inhalation:
 - Air exchange rate = $0.5 h^{-1}$
 - Resuspension rate = 1E-04 h⁻¹
- Skin dose (wipe off):
 - Area of the hands = 400 cm²
 - Wipe-off efficiency $(f_{oth}) = 0.2$
 - Wipe off-frequency (ϕ) = 0.313 h⁻¹
 - Area of the face = 100 cm^2
- Ingestion:
 - Ingestion frequency = Wipe-off frequency
 - Ingestion fraction (f_{ing}) = 0.01
 - Fraction hands to mouth (f_{htm}) = 1

EUROSAFE 2017

Objectives and methodology – Scenarios

• Alternative scenarios

Scenario #	Varied parameter (wrt ref. Scenario 1)
01	Reference scenario
02	Distance 🥕
03	Wipe frequency 🗷
04	Wipe Efficiency 5
05	Wipe Efficiency $\Sigma \Sigma$
06	Time 5

- Introduction
- Objectives and methodology
- Results
- Benchmarking study
- Conclusions

Results – Absolute dose values

- Absolute dose values are isotope-specific
- Pu-241 and Sr-90 exceed the 10-µSv/y value
- Results are specific for the bookcase

Results – Dose variation w.r.t. reference scenario 1

- Rather heterogeneous behaviour
- Variation of a parameter causes different (sometimes opposite) effects on the considered dose contributions
- The net outcome depends on which effect is dominant, which in turn is isotope-specific

- Introduction
- Objectives and methodology
- Results
- Benchmarking study
- Conclusions

Results were benchmarked against RP101
Geometrical and time-parameters in SUDOQU set equal to RP101

• Main assumption differences

	RP101	SUDOQU
Activity	Non-constant	Non-constant
Mechanisms affecting activity	Radioactive decay	Radioactive decay, wipe-off, resuspension, deposition
Removable fraction	10%	100%
Wipe-off efficiency	10%	20%

First comparison: all SUDOQU assumptions left unvaried

- External-irradiation contribution lower in SUDOQU (in RP101 more activity remains fixed on the surface) → effect visible for Co-60, Na-22
- Skin and ingestion dose higher in SUDOQU (larger removable fraction, more efficient wipe-off process) → effect visible for Cs-137, Sr-90+, Pu-241

EUROSAFE 2017

Second comparison: SUDOQU assumptions adapted to RP101

- External-irradiation contribution increases → SUDOQU results for Co-60, Na-22 increase
- Skin and ingestion dose decrease → SUDOQU results for Cs-137, Sr-90+, Pu-241 decrease (but remain conservative)

Results in SUDOQU are conservative, and globally in good agreement

- Introduction
- Objectives and methodology
- Results
- Benchmarking study
- Conclusions

Conclusion and future steps

- In SUDOQU, time-evolution of activity is influenced by several mechanisms (resuspension, wipe-off, radioactive decay, deposition)
- The variation of one parameter has different impacts on the involved phenomena. The outcome on the total dose depends on which effect is dominant, which is isotope-specific.

Difficulty to predict beforehand the effect (and the conservatism) of a given assumption

- Next steps:
 - Detailed sensitivity analysis to identify the most relevant parameters
 - Performance of statistical calculations to identify more general trends and dependencies, and to develop probabilistic and conservative dose assessments

Thank you for your attention.

Federica Russo federica.russo@belv.be

