<u>E. Wieland</u>

- B.Z. Cvetković* - D. Kunz* - G. Salazar# - S. Szidat#

* Paul Scherrer Institut, Villigen PSI, Switzerland

University of Bern, Berne, Switzerland

Carbon-14 speciation during anoxic corrosion of activated steel in a repository environment

Layout

- Introduction
 - ¹⁴C in L/ILW a dose-determining radionuclide
 - Organic compounds produced during anoxic iron corrosion
- Set-up of corrosion experiment with activated steel
 - Analytical challenge
 - Set-up of the reactor system
 - Characterization of material
 - Development of compound-specific ¹⁴C AMS analytical technique
- First results from corrosion experiment with activated steel
- Open issues
- Summary and Conclusions

Carbon-14 a natural isotope

(http://www.uni-kiel.de/leibniz/Leibniz-web_deutsch/radiokarbonmethode/radiokarbonmethode.htm)

□ Carbon-14 is a natural radioisotope generated due to reaction of neutrons with nitrogen-14 in the earth's atmosphere

□ Carbon-14 is important because it relates to the human population dose from radiocarbon

Importance of knowledge on chemical speciation for SA

Questions

- What kind of ¹⁴C-containing compounds are formed during corrosion of activated metals?
- What is their fate in the repository environment (near and far field)?
- Ratio of gaseous/volatile to dissolved carbons compounds; e.g. ¹⁴CH₄ versus H¹⁴COOH?
- Amount of inorganic carbon produced, e.g. ${}^{14}\text{CO}_{3}{}^{2-}$

Knowledge of ¹⁴C speciation is important for SA Speciation determines migration (pathway etc.)

Material inventory in repository

Cement	~ 15 wt%	Metals ~	26 wt%
Aggregate	e~ 54 wt%	Organics ~	5 wt%

Geochemical conditions of the near field

- alkaline: Reference pH = 12.5 (pH 11.5 13.3)
- reducing: Reference $E_h = -230 \text{ mV} (-750 \text{ mV to} 230 \text{ mV})$
- Presence of H_2

CAST EURATOM

Swiss L/ILW repository: Safety assessment (SA)

Carbon-14 waste forms in Switzerland

□ Carbon-14 inventory in deep geological L/ILW repository

□ Activation of steel in nuclear power plants by thermal neutrons

alloying constituent in steels (stainless steel \leq 0.8 % C in carbide form) Carbon: nitrogen atmospheres used for cooling, stirring, and protecting metal Nitrogen: from oxidation during steel production (stainless steel $\leq 0.09 \% N_2$)

Isotope	Natural abundance (%)	Cross section for ther neutron capture (barr	mal ns)	Reaction
¹⁴ N	99.634	1.81		¹⁴ N(n,p) ¹⁴ C
¹³ C	1.103	0.0009		¹³ C(n,g) ¹⁴ C
¹⁷ O	0.0383	0.235		¹⁷ O(n,a) ¹⁴ C
CAST EURATOM		PAUL SCHERRER INSTITUT		OSAFE 20

Organics produced during iron corrosion

Cvetković et al., 2017

□ Non-activated iron powders

- untreated and pre-washed with 1N HCl and Milli-Q water rinsed (Deng et al., 1997)

 $\begin{array}{l} d(90) \sim 9 \ \mu m \\ Surface \ area \\ = \ 0.47 \ m^2 \ g^{-1} \\ Fe \ content \\ > \ 97 \ \% \\ C \ content \\ = \ 0.83 \ \% \end{array}$

□ Solutions

- Portlandite-saturated solution (pH = 12.5)
- Ca-Si solution in equilibrium with a C-S-H phase (Ca/Si ratio \sim 0.8) (pH \sim 11.5)

Organics produced during iron corrosion

Batch-type experiments with non-activated iron:

- □ Literature review suggests 19 species at maximum (all table entries except lactate)
- In this study 15 species out of the 19 species + lactate have been identified (all table entries in bold)
- Both oxidized and reduced hydrocarbons are present in corroding iron-water systems
- □ Small molecules with C≤5 have been identified above the detection limit during the corrosion of iron/steel in cement-type pore solutions

Hydrocarbons	Alcohols/aldehydes	Carboxylate ions
Methane (CH ₄)	Methanol (CH_3OH)	Formate (HCOO ⁻)
Ethane (C_2H_6)	Ethanol (C ₂ H ₅ OH)	Acetate (CH ₃ COO ⁻)
Ethene (C_2H_4)	Formaldehyde (CH ₂ O)	Propanoate ($C_2H_5COO^-$)
Propane (C_3H_8)	Acetaldehyde (C ₂ H ₄ O)	Butanoate ($C_3H_7COO^-$)
Propene (C_3H_6)	Propionaldehyde (C ₃ H ₆ O)	Malonate ($CH_2(COO^-)_2$)
Butane (C_4H_{10})		Oxalate $(C_2O_4^{2-})$
Butylene (C ₄ H ₈)		Lactate (CH ₃ CHOHCOO ⁻)
Pentene (C_5H_{10})		

Corrosion experiment with activated steel – a major challenge

Challenge - Very low concentrations of ¹⁴C-bearing compounds expected

- □ Use of small activated steel samples due to high dose rate (no hotcell available) → high dose rate (60 Co), low 14 C inventory
- \Box Low ¹⁴C content in activated steel (~0.1 µg ¹⁴C/g)
- □ Very low corrosion rates under alkaline conditions (\leq 50 nm/year)

Scoping calculations for an <u>experimental set-up</u> (1 g material, moderate surface area of 1cm²/g, 300 mL reactor volume, 1 day reaction time) result in a ¹⁴C concentration of

Total ¹⁴C: ~2.8·10⁻¹⁵ mol ¹⁴C/L·d = $3.9\cdot10^{-14}$ g ¹⁴C/L ·d = 0.64μ Bq ¹⁴C/L ·d

<u>Analytics:</u> small volumes, chromatographic separation causes additional dilution Detection limits of standard techniques:

GC or IC coupled to MS/CD: ~ $10^{-8} - 10^{-7} g C/L$ *Liquid scintillation counting* (¹⁴*C* detection): ~ $10^{-11} - 10^{-10} g {}^{14}C/L$ ¹⁴*C accelerator mass spectrometry (AMS):* ~ $10^{-18} g {}^{14}C$ (= 20'000 atoms) (20 µg total ^{12,13}*C* carbon, ${}^{14}C/{}^{12,13}C$ isotopic ratio)

 \rightarrow $^{14}\mathrm{C}$ concentration is below the detection limits of standard analytical techniques

 Development of compound-specific ¹⁴C analysis as a combination of chromatographic separation of organics and ¹⁴C AMS detection

Set-up of the corrosion experiment with activated steel

Ion chromatography (IC)

- □ Chromatographic separation and sample preparation using ion chromatography (IC) and gas chromatography (GC)
- Quantification of the carbon-14 activity by ¹⁴C accelerator mass spectrometry (AMS) in both liquid and gas samples (= compound-specific ¹⁴C AMS)

Corrosion reactor

Gas-tight reactor (pressure autoclave) for planned corrosion experiments with specimen prepared from activated steel nut

- □ Combined stirring and sample container for steel nut (PEEK liner)
- Sampling of liquid and gas phase and replacement of liquid and gas phase without opening the reactor
- \Box Sensors for pressure and temperature control and detection of O₂ in aqueous phase

Characterisation of activated steel from NPP Gösgen (Switzerland)

Fuel assembly guide tube nut: Nuts used to mount confinement tubes of fuel rods in the reactor core («Brennelement-Führungsrohrmuttern»)

Compound-specific ¹⁴C AMS for dissolved species

Cvetković et al., 2017

Ion chromatography

Dionex IC-MS system:

- Conductivity detection (CD)
- Electrochemical eluent generation
- Gradient and isocratic elution
- Fraction collector

Oxidation of aliquot from ¹⁴C-acetate fraction to ¹⁴CO₂ and injection into AMS

□ Recovery

AA: ¹⁴C-acetic acid FA: ¹⁴C-formic acid

	Even entre d			Recovery	Recovery]
		Expected	Measured	[%]	[%]	
		[Bq/L]	[Bq/L]	AA	AA + FA	
	0.21	0.09	0.06	64	69	
	0.47	0.24	0.21	87	96	
	0.95	0.48	0.39	82	88	
	2.67	1.23	1.29	105	114	
	4.39	2.24	2.00	89	97	
	11.16	4.81	4.42	92	98	
	24.61	11.44	10.50	92	99	
	49.12	22.83	20.49	90	97	
PAUL SCH	ERRER INSTITU	JT	Average:	91 ± 7	99 ± 7	
	III.		EUF	ROS	FE	2017

Status

Compound-specific ¹⁴C AMS

Background of ¹⁴C: ~0.06 F¹⁴C
 Linear range: ~0.06 - ~50 F¹⁴C
 Measurements are reproducible
 No cross contamination

 $1 F^{14}C = {}^{14}C/({}^{12}C \times 1.18 \cdot 10^{-12})$

First results from corrosion experiment

□ Start of corrosion experiment with activated steel: May 2016

10 cm ←→ ∏	Activated st	eel samples	Analysis			
Agitator shaft	Mass:	2 x 1 g	- ⁶⁰ Co activity			
Gas phase	Mass- ¹² C:	~ 2 mg	- TO ¹² C and ¹² C dissolved			
Aqueous phase Reactor wall:	Mass- ¹⁴ C:	~ 0.2 µg	and gaseous compounds			
Coated withTefion 22 m 28 cm Sampleholder with two activated steel nuts	Dose rate (600	Co): 60 mSv/h	- IO ¹ and ¹ C-bearing aqueous organic compounds			
	Activity (¹⁴ C):	35.6 kBq	by compound-specific ¹⁴ C AMS			

Time	O ₂	Pressure	TO ¹⁴ C by AMS		TO ¹² C	¹² C Hydrocarbons [µM]			¹² C Carboxylate ions [µM]				⁶⁰ Co	
[d]	[ppb]	[bar]	[F ¹⁴ C]	[Bq/L]	[ppm]	Methane	Ethane	Ethene	Formate	Acetate	Oxalate	Glycolate	Lactate	[Bq/mL]
Blank	58.8	5.03	0.59	0.27	n.d.	< LOD	< LOD	< LOD	≤ 5	< LOD	≤ 0.1	≤ 0.5	< LOD	-
1	43.2	5.15	0.10	0.04	n.d	< LOD	< LOD	< LOD	2	< 5	0.2	< LOD	<0.5.	-
15	38.9	5.02	0.99	0.45	2.33	< 0.06	< LOD	< LOD	3	< LOD	0.4	0.8	1.6	-
29	37.5	5.04	1.56	0.70	2.41	0.07	< LOD	< LOD	2	< LOD	0.4	0.9	1.2	5.2
93	43.2	5.06	3.53	1.60	4.23	0.42	< LOD	< 0.03	8	< 5	0.6	1.2	2.8	5.2
286	59.7	5.19	2.94	1.33	5.59	0.55	< LOD	0.08	44	21	0.2	1.1	2.5	4.4
412	69.5	5.02	1.46	0.66	5.92	0.99	< LOD	0.06	15	10	0.9	1.8	4.1	3.3
						JL								
			¹⁴ C-A	MS	¹²⁺¹⁴ C TOC ¹² C GC-MS		-MS	¹² C IC-MS				/-countin		

□ Total organic ¹⁴C carbon (TO¹⁴C) (= total concentration of ¹⁴C-containing carboxylate ions) increases with time – individual organic compounds detectable at 412 days sampling

Total organic carbon (TOC = dissolved ¹²C-containing compounds) increases with time – presence of methane and carboxylates indicated

First results from corrosion experiment

- ¹⁴C-containing acetate, formate and lactate determined by AMS after 412 days reaction time and applying a pre-concentration step.
- Modelling increase in TO¹⁴C with time based on ¹⁴C inventory and corrosion rates and on the assumption that the entire ¹⁴C inventory of steel is converted into TO¹⁴C

EUROSAFE

- □ TO¹⁴C corresponds to the concentration of ¹⁴C-containing lactate, formate and acetate carboxylates are important organic compounds formed during corrosion of activated steel
- Increase in TO¹⁴C corresponds to fast corrosion (100 nm/a) during 100 days and subsequent very slow corrosion (2 nm/a)

Open issues

- Quantification of inorganic carbon-14 (pH = 12.5): ${}^{14}CO_{3}{}^{2-} = T{}^{14}C TO{}^{14}C$ An analytical method for the determination of T{}^{14}C is currently being developed
- Ratio of gaseous and volatile ¹⁴C species to dissolved ¹⁴C species:

A compound-specific ¹⁴C AMS-based techniques for the identification and quantification of gaseous ¹⁴C-bearing compounds is under development

Gas chromatography (GC) + Oxidation

Gas chromatography oven

Summary and Conclusions

- The chemical speciation of ¹⁴C-bearing organic compounds formed in the course of the anoxic corrosion of activated steel in a repository for radioactive waste is still poorly known; specific consideration of the ¹⁴C speciation is not possible in safety assessments to date;
- The current project addresses this gap in our knowledge and allows a worldwide unique experiment on the corrosion of ¹⁴C-bearing activated steel and the identification of the ¹⁴C-bearing organic compounds to be undertaken;
- The concentrations of ¹⁴C-bearing organic compounds are expected to be very low in the planned corrosion experiment, in particular below the detection limits of standard ¹⁴C radioassay techniques, which requires the development of a very sensitive, compound-specific ¹⁴C AMS-based analytical technique;
- First results from leach and corrosion experiments with activated steel show that the identification and quantification of the ¹⁴C-bearing organic compounds is feasible using compound-specific ¹⁴C AMS.

Acknowledgements

- Characterization of activated steel
 - Dr. I. Günther-Leopold, H.P. Linder, M. Martin (PSI, AHL, Switzerland)
 - Dr. D. Schumann and T. Stowasser (PSI, LCH, Switzerland)
 - Dr. B. Volmert (Nagra, Switzerland)
- Development of reactor system
 - Dr. J. Tits and D. Kunz (PSI, LES, Switzerland)
- Development of analytical methods
 - Dr. J. Schenzel (PSI, LES, Switzerland)
 - Dr. G. Schlotterbeck and A. Büttler (FHNW ICB Muttenz, Switzerland)
- Development of compound-specific ¹⁴C AMS-based analytical techniques
 - P. Pichler and Ph. Mottay (Brechbühler AG, Schlieren, Switzerland)
- Financial support
 - swissnuclear
 - National Cooperative for the Disposal of Radioactive Waste (Nagra), Switzerland

The project has received funding from the European Union's European Atomic Energy Community's (Euratom) Seventh Framework Programme FP7/2007-2013 under grant agreement no. 604779, the CAST project.

Speciation of carbon in iron-water systems - Previous studies

Japanese studies (RWMC studies)

Carbon steel, Fe₃C, activated steel
 Batch-type experiments, reactor
 Synthetic solutions: pH 8 and 12.5
 Samples stored under N₂
 TOC, HPLC, GC (few samples)
 No pretreatment

Observations

□ No volatile hydrocarbons (~ 0.01 %)

- □ Organic carbon (55 85 %)
- □ Inorganic carbon (15 45 %)
- Oxygenated organic compounds:
 - formic and acetic acid, minor portions of aldehydes and alcohols
 - decompose with time in alkaline solution

Deng et al., ES&T 1997

 \Box Fe₃C, various iron powders

- □ Batch-type zero headspace systems
- \Box Milli-Q water (low and high CO₂)
- \square Sealed samples in air, or 1 atm $\rm CO_2$

□ GC/FID

□ Acid pretreatment of iron powders

Observations

- Volatile hydrocarbons
 - alkanes and alkenes ($C_n \le 5$)
- Almost complete conversion of carbide carbon into hydrocarbons (dissolution in HCl, mass balance)
- Graphite carbon in iron not converted into hydrocarbons

EUROSAFE

Thermodynamic modelling of C-H-O systems

Wieland and Hummel, 2015

Comparison of complete (left) and partial (right) thermodynamic equilibrium.

Conclusion

The major uncertainties in modelling the C-H-O system are NOT the uncertainties associated with the thermodynamic data BUT the model uncertainties, i.e. the question of metastability.

