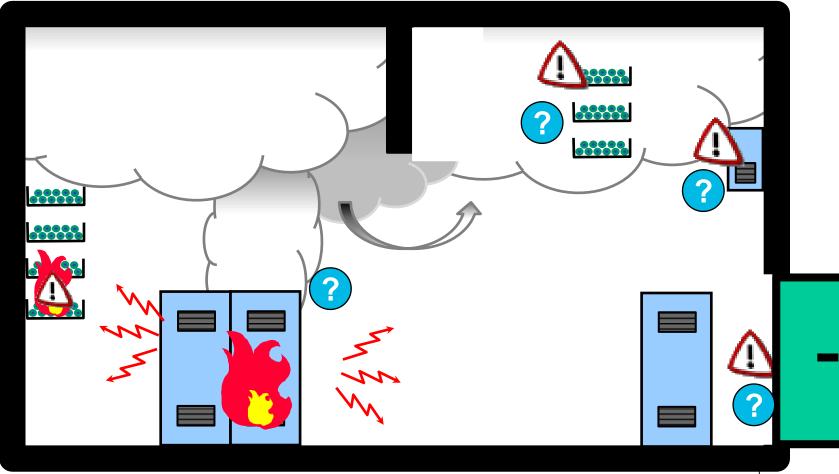
R. MEYRAND – J. ESPARGILLIERE

Focus on the experimental investigations in support of fire PSA concerning the French 1300 MWe Nuclear Power Plants

Fire PSA

- PSA objective: assess core damage frequency
 - Event tree structure: initiating event = fire
 - Fire PSA focuses on the most critical safety equipment during fire scenarios in terms of fire-related risks
 - Need quantification of effects of a given fire scenario
- Need of support studies
 - Objective: assess safety equipment damage during a fire scenario
 - Numerous computations: time efficient method needed
 - Extensive amount of data required

Fire PSA – Support Studies - Data required


The room data required are:

- Room dimension and wall composition
- Ventilation inlet and exhaust area and position
- Electrical/mechanical component position, dimensions and fire load
- Cable trays position, length and fire load
- Fire protection equipment: fire dampers, detection, sprinkler...
- Doors/openings positions and types
- The ventilation data required are:
 - Air flow-rates (inlet and exhaust) of each room
 - Leakage rates through the doors of each room
 - Pressures and air flow-rates through duct ventilation and element (fans, filter...)
- Files provided by licensee in safety assessments don't contain all these data
- Plant visit requested to collect all the necessary data and provide a comprehensive building model

Fire PSA – Support studies – Problem description

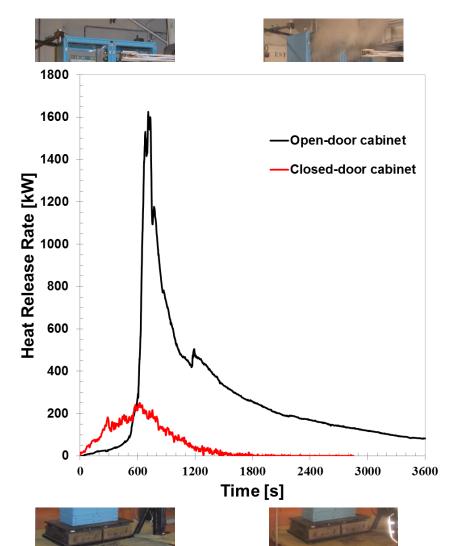
Support Studies – IRSN approach

- Data required for support studies
 - Fire characterization (HRR, growth rate, MLR, combustion products...)
 - Malfunction criteria of electrical equipment (relays, boards, switch, cables...)
 - Aeraulic response to fire effects of compartmentation device
- IRSN approach is based on experimental tests, allowing:
 - Acquisition of a general knowledge and key parameters involved
 - The set up and validation of numerical models
 - The definition of failure criteria

Electrical cabinet fire characterization

 Experimental tests on the behaviour of an electrical cabinet fire with open or closed doors: PICSEL_A and CARMELO programs

Programs objectives:


Characterize the behavior of an electrical cabinet fire in free atmosphere

- Experimental setup: SATURNE hood
- Data obtained:
 - Mass loss rate
 - Fire heat release
 - Heat flux emitted by the fire
 - Amount of gas and soot produced

Electrical cabinet fire characterization

During fire

Post fire

Damage criteria – Electrical device malfunction

 Experimental tests on the behaviour of an electrical relay board under thermal stress: CATHODE program

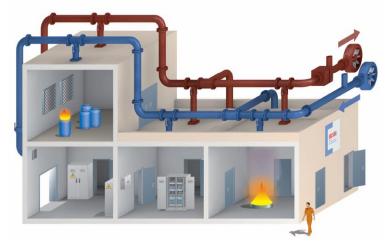
Programs objectives:

Getting further information about malfunction of electrical equipment during a thermal stress

- Experimental setup: SIROCCO furnace
- Data obtained:
 - Malfunction ambient temperature

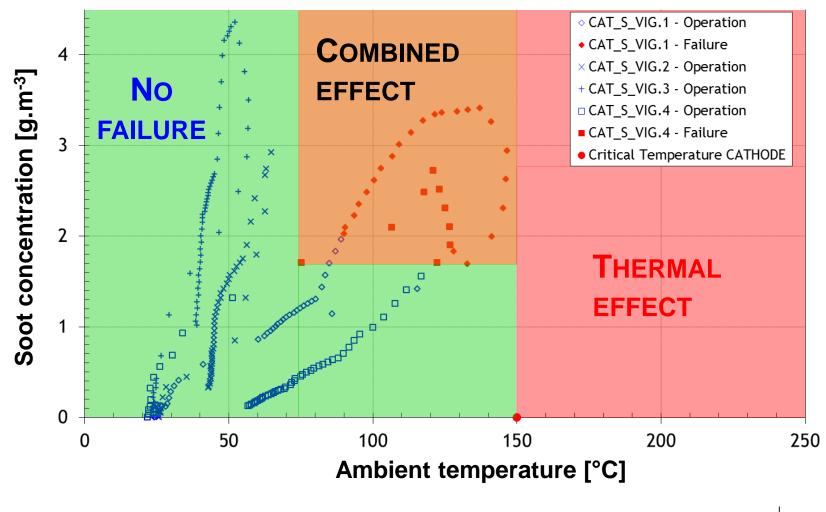
EUROSAFE | 2017

Damage criteria – Electrical device malfunction


 Experimental tests on the behaviour of an electrical relay board exposed to the effects of a real fire: CATHODE_SUIES program

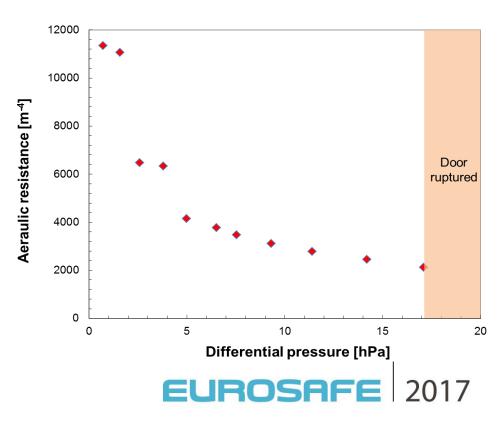
Programs objectives:

Investigating the malfunction of electrical equipment due the effect of soot released during a real fire


- Experimental setup: DIVA facility
- Data obtained:
 - Malfunction ambient condition

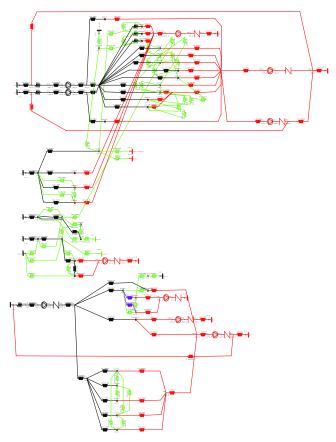
(gas temperature and soot concentration)

Damage criteria – Electrical device malfunction



Aeraulic resistance and rupture threshold

- STARMANIA aeraulic loop facility
- Aeraulic resistance determination $(\Delta P = f(Q_{leak}))$
- Temperature and humidity control



Numerical Tools

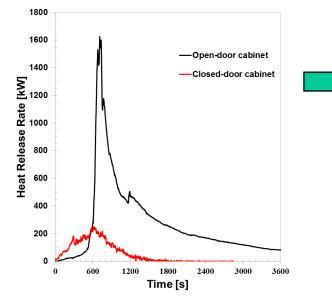
The SYLVIA software system, developed by IRSN, simulates the consequences of a fire in an industrial facility featuring a ventilation network

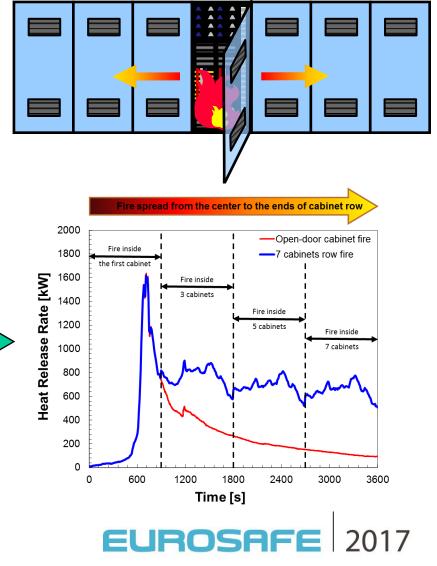
- It calculates the development of the fire, the transportation of hot gases and the damage of isolating equipment such as firebreak doors and fire dampers
- Modelling of the fire is a zone-based approach: the volume of each room is divided into two zones of variable height in which the thermodynamic properties (pressure, temperature and concentration of species) are uniform
- The ventilation network is modelled using a set of elements, conduits, valves, fans, etc. Mass and heat exchange correlations (between zones, flames and walls) supplement the mass and energy balance equations for the zones

View of a full building model (SYLVIA)

EUROSAFE 2017

SYLVIA allows to develop a whole building model




Fire modeling – fire of an electrical cabinet row

- Transition from a cabinet to the adjacent one
 - NUREG 6850

DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

- propagation assumed after 15 min
- HRR input built by stacking the HRR at propagation times

Conclusion

- With the combined use of SYLVIA software and experimental tests, a comprehensive method to perform studies in support of a fire PSA was developed
 - Simple and conservative approach for modelling electrical cabinets row
 - Comprehensive building model: allows to investigate multicompartments scenario (door leakage and/or opening...)
- Pending and future works
 - Expansion of knowledge regarding cable trays fire (both in open atmosphere and confined configuration)
 - Development of a semi-empirical cable tray complex fire model
 - Setup of a dedicated experimental device to further investigate the soot/thermal stress on malfunction of electrical device

