C. Müller - R. Arians - C. Quester

Analysis of Influences of External Grid Disturbances on Auxiliary Power Supply Systems of Nuclear Power Plants

global research for safet

Relevance / Motivation

There are many events related to grid disturbance, e.g.:

- [1] IRS, IRS No. 7929, "Transition of all Dukovany NPP units to insular operation after the disconnection of several 400 kV lines of the national grid caused by a short circuit in the Sokolnice switch yard", August 2006
- [2] IRS, IRS No. 7954, "Reactor trip due to off-site power fluctuation: NRC information notice 2008-12", June 2007
- [3] IRS, IRS No. 8294, "Low voltage safety grade power electronics failed due to an HV over-heated line lightning overvoltage", July 2012
- [4] IRS, IRS No. 8315, "EDG failed to start after undetected loss of two phases on 400 kV incoming offsite supply", May 2013
- → Development of a method to analyse the effects of grid disturbances on auxiliary power systems of NPPs

Effects of External Grid Disturbances on Nuclear Power Plants – Outline of the Research Project

- Evaluation of international operating experience
 - GRS databases, e.g. event reports (e.g. IRS, ME)
- Categorization within classification scheme
 - Determination of grid disturbances with highest relevance
- Development of representative scenarios
 - 10 basic scenarios (containing only type of grid disturbance)
 - 14 combinations (containing two or three types of grid disturbances)
- Investigation of impact of scenarios on the electrical equipment of NPPs
 - Performed using a grid analysis, planning, optimization and simulation tool (commercial software)
 - In combination with procedural analysis of effects on other parts of the NPP
- Assessment of effects of the scenarios on the auxiliary power systems of NPPs

Scenarios of Grid Disturbances (1)

Scenarios containing one type of grid disturbance:

- 1. Undervoltage transient
- 2. Overvoltage transient
- 3. Fluctuations of reactive power and mains voltage respectively
- 4. Fluctuations of effective power and mains frequency respectively
- 5. Underfrequency transient
- 6. Overfrequency transient
- 7. Fluctuations of the load
- 8. Loss of offsite power without previous transient
- 9. One-phase asymmetry
- 10. Two-phases asymmetry

Scenarios of Grid Disturbances (2)

Combinations of grid disturbances, e.g.:

- 11. One-phase asymmetry and fluctuations of reactive power and mains voltage respectively
- 12. One-phase asymmetry and fluctuations of the load

24. Overfrequency transient and fluctuations of the load and an onephase asymmetry

. . .

Simulation and Analysis Tool

- Load flow / contingency analysis
- Short circuit analysis
- Harmonic analysis
- Dynamic simulation
- Flash-arc calculation
- Overhead line / cable parameter calculation
- Cable sizing
- ...
- Component libraries
 - D-A-CH
 - D Deutschland Germany
 - A Österreich Austria
 - CH Schweiz Switzerland

	•	001100		0 1112	-01
_					
)	alob	al researc	h for s	afetv	

NEPLAN I'SI	NEPLAN° Smarter Tools
A Quality Product f	from PLAN NEPLAN AG Oberwachtstr. 2 CH-8700 Küsnacht Switzerland
	Copyright © 1988-2014

Implementation of a Model of an Auxiliary Power System

- Based on German NPPs of the type Konvoi
- Considers the following details:
 - Generator
 - Transformers
 - Busbars (AC and DC)
 - Important actuators
 - Connecting cables
 - Emergency diesel generators (EDGs)
 - External grids

- ...

Auxiliary Power System

global research for safety

EUROSAFE 2017

Auxiliary Power System

global research for safety

R

Load Flow Analysis

400 kV High Current Line P=1261,397 MW Q=-33,891 Mvar Example: Undervoltage (95 %) -I=1.917 kA load tap changers of unit transformers switched 4 times 400-kV-Bus 400 kV u=95,00 % P=-630.726 MW P=-630.726 MW Q=16,945 Mvar Q=16,945 Mvar I=0,959 kA I=0,959 kA BAT02 Tap=-4 BAT01 Tap=-4 P=630,750 MW P=630,750 MW Q=40,143 Mvar Q=40,143 Mvar I=13,515 kA I=13,515 kA BAA 27 kV u=100,00 % P=35,492 MW P=40,634 MW Q=19,390 Mvar Q=22,284 Mvar I=0,865 kA I=0.991 kA MKA P=-1350,000 MW BBT01 Q=-121,960 Mvar Tap=0 I=28,722 kA EUROSAFE 2017

BBT02 Tap=0

global research for safety

Short Circuit Analysis

Harmonic Analysis

Dynamic Simulation

global research for safety

Investigations Carried Out

Simulations for all scenarios

- at full load
- in shutdown operation

taking into account

- fast transients
- slow transients

Results

- 6 scenarios are explicitly covered by the original design of the auxiliary power system
- the simulations/calculations do not indicate any need for action for 8 scenarios
- the simulations indicate a need for action for 10 scenarios, but it is sufficient if the recommendations of the Reactor Safety Commission (RSK-"Reaktor-Sicherheitskommission") from 2014 concerning phase asymmetry are taken into account

Contact

Christian Müller

Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH Schwertnergasse 1 50667 Köln (Cologne) Germany

Tel.: +49 221 2068-618 Fax: +49 221 2068-10618 E-Mail: <u>christian.mueller@grs.de</u>

