Dr. Janis Endres – Dr. Florence-Nathalie Sentuc – Uwe Büttner

Review of Current Q System and the A_1/A_2 Values of the IAEA Transport Regulation

Historical overview - development of the Q system

- MacDonald, Goldfinch: Radioactive Material Transport Package Activity Release Limits. IAEA-TECDOC-375 (1986)
- Development of the Q system as basis of an improved A₁/A₂ system considering (at this time) up-to-date recommendations of ICRP

- Today, basis for calculation of A values are different exposure pathways of Q values (Q_A,...,Q_E)
- Both, A values and Q values are activities given in unit TBq

EUROSAFE 2016

Current Q system (1)

- Q system shall provide inherent safety
- Developed in 1985 with a revision of the Transport Regulations of the IAEA
- Provides calculation methods of allowed activity quantities in Typ A packages
- A values are calculated for radioactive material
 - in special form (A1 value) and
 - in non-special form (A2 value)

Current Q system (2)

- The Q system was aligned in 1996 to (at this time) new recommendations of ICRP publication 60 of 1990
 - new definition of quantity effective dose
 - Reviewed dose coefficients for inhalation and ingestion
 - New dose coefficients for external exposure (US EPA FGR-12)
 - Reviewed dose calculation of gamma radiation and beta radiation
 - Reviewed assessment of neutron radiation

Current Q system (3)

- The current Q system
 - Provides nuclide dependent A_1/A_2 values
 - Allows to transport radioactive material independently of shape or quantity (as long as rules of the Q system and Transport regulations are satisfied)
- Additional regulations are given for
 - Fissile material

– Uranium hexafluoride (UF₆)

Current Q system (4)

The current Q system knows 5 (or 6) exposure pathways

- Q_A: external photon dose
- Q_B: external beta dose
- Q_C: inhalation dose
- Q_D: skin dose and ingestion dose due to contamination transfer
- Q_E: submersion dose

 Q_{F}

nca

• $Q_{\rm F}$: alpha emitter ("special case" of $Q_{\rm C}$)

Current Q system (5)

- Distance: 1 m
- Exposure time: 30 minutes
- Applied dose limits:
 - 50 mSv effective dose
 - 500 mSv equivalent dose (incl. skin dose)
 - 150 mSv dose for the lens of the eye

- $A_1 = \min \{Q_A, Q_B, (Q_F)\}$
- $A_2 = \min \{Q_A, Q_B, Q_C, Q_D, Q_E, (Q_F)\}$

Work of GRS regarding the Q system

- Federal Office for Radiation Protection (BfS) and Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) granted GRS research projects
- Aims of this research projects (amongst others):
 - Analysis of the current Q system
 - Development of a calculation tool for calculation of Q and A values for new nuclides
- Some issues of the current Q system were detected
- Calculation tool BerQATrans developed for recalculation of current and of new Q and A values according the current Q system
- Publication in GRS report No. GRS-343

Some issues in the current Q system

- Q and A values are partly based on outdated input data
- Dose coefficients listed in TS-G-1.1/SSG-26 for Q_c values are partly not consistent with dose coefficients of ICRP 68
 - No reference is given for dose coefficients in TS-G-1.1/SSG-26
- Dose rate coefficients in TS-G-1.1/SSG-26 seem to be calculated backwards from listed Q values
 - Main impact for for small coefficients
- Q values are limited to 1000 TBq without justification
- Determination of "unlimited" values for LSA material is not documented in detail
- Treatment of progeny differs between the Q value exposure pathways
 EUROSRFE 2016

Calculation tool BerQATrans

- Written in MS Excel VBA
- Designed to
 - Recalculate existing Q and A values listed in SSG-26,
 - Calculate new values for nuclides not listed in SSG-26.
- With BerQATrans it is possible to use up-to-date nuclide data from ICRP publications 107, 116, or 119
- Calculation of Q and A values for 768 nuclides (373 nuclides are listed in SSR-6) using calculation methods of the current Q system

A-werte	ni qemais	uem Q-3	vstern	© 2014 - 2015 Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Kö							
<u>Ergebr</u>	nisse A	-Werte					Rechnung von Montag, 22. August 2016, 11:30 Uhr				
Nuklid	chem. Form	Halbwer	tszeit	Q _A (TBq)	Q _B (TBq)	Q c (TBq)	Q _D (TBq)	Q _E (TBq)	Q _F (TBq)	А ₁ (ТВq)	А ₂ (ТВq)
Ac-225	s	10	d	4,8E+00	7,7E-01	6,3E-03	2,9E-01		6,3E+01	8E-01	6E-03
Ac-227	F	21,773	а	1,0E+03	1,2E+02	9,3E-05	3,5E+01		9,3E-01	9E-01	9E-05
Ac-228	F	6,13	h	1,1E+00	5,3E-01	2,0E+00	4,9E-01		1,0E+03	5E-01	5E-01
Ag-105	s	41	d	2,0E+00	1,0E+03	6,4E+01	2,5E+01			2E+00	2E+00
Ag-108m	s	127	а	6,7E-01	5,6E+00	1,4E+00	5,6E+00			7E-01	7E-01
Ag-110m	s	249,9	d	4,0E-01	1,7E+01	4,2E+00	2,0E+00			4E-01	4E-01
Ag-111	s	7,45	d	4,2E+01	1,8E+00	2,9E+01	5,9E-01			2E+00	6E-01
AI-26	м	7,16E+05	а	4,2E-01	1,3E+00	2,8E+00	8,2E-01			4E-01	4E-01
Am-241	м	432,2	а	2,9E+01	1,0E+03	1,3E-03	3,3E+02		1,3E+01	1E+01	1E-03
Am-242m	м	152	а	4,0E+01	4,5E+01	1,4E-03	9,9E-01		1,4E+01	1E+01	1E-03
Am-243	м	7,38E+03	а	5,0E+00	2,1E+02	1,3E-03	4,0E-01		1,3E+01	5E+00	1E-03
Ar-37		35,02	d	1,0E+03	1,0E+03		1,0E+03	k. W.		4E+01	4E+01
Ar-39		269	а	k. W.	6,3E+01			1,8E+01		4E+01	2E+01
Ar-41		1.827	h	9.1E-01	2.9E-01			3.1E-01		3E-01	3E-01

EUROSAFE

Results of the research project of GRS (1)

- Recalculation of most nuclides of SSR-6 using BerQATrans
 - deviations from tabulated values are up to a factor of two
- 8 nuclides show larger deviations than a factor of two
 - ²⁶AI, ⁴⁷Ca, ¹⁶⁶Dy, ²⁰²Pb, ²²⁵Ra, ⁹²Sr, ^{96m}Tc, ²³¹Th (see next slide)
- Good agreement of values calculated with BerQATrans
- Identification of issues

Results of the research project of GRS (2)

Nuclide	Remarks to values calculated with BerQATrans
²⁶ AI	$Q_{\rm B}$ value lesser than in SSG-26; therefore, $Q_{\rm A}$ value restricts A_1/A_2 values
⁴⁷ Ca	Q_A and Q_B values lesser than in SSG-26; now Q_B values restricts A_1 value
¹⁶⁶ Dy	$Q_{\rm B}$ value lesser than in SSG-26; therefore, A_1 value lesser too
²⁰² Pb	$Q_{\rm D}$ value higher than in SSG-26 and "unlimited"; therefore A_1/A_2 values "unlimited" too
²²⁵ Ra	$Q_{\rm B}$ value and $Q_{\rm C}$ value higher than in SSG-26; therefore, A_1 value and A_2 value higher
⁹² Sr	Q _C value calculated with progeny in TS-G-1.1 (2008)
^{96m} Tc	$Q_{\rm C}$ and $Q_{\rm D}$ values calculated with progeny in TS-G-1.1 (2008)
²³¹ Th	higher deviation of $Q_{\rm C}$ value, possibly calculated with progeny in TS-G-1.1 (2008)

EUROSAFE 2016

Q system from the point of view of other organizations

• Review of the Q system by several other organizations

- (e.g. Health Protection Agency with report HPA-CRCE-027, September 2011)
 - Development of calculation program
 - Recalculation of Q and A values
 - Calculation of new nuclides
- Suggestion of TRANSSC (Transport Safety Standards Committee) members
 - meeting of organizations from France, Japan, Germany, and United Kingdom was held in September 2013 at GRS in Cologne, Germany

Q system from the point of view of other organizations

- Foundation of an international working group
 - "Working group on review of A₁ and A₂ values for the IAEA Transport Regulations"
 - Aim: review and update of calculation methods of the Q system according the actual state-of-the-art of science and technology

International Working Group

- Beginning in 2014 the working group met several times
- Request by TRANSSC in September 2015
 - Calculation of Q and A values for 5 new nuclides
 - Calculations were performed by HPE, NRA and GRS
 - Results of BerQATrans from GRS are shown below
 - Data used from ICRP 38, ^{193m}Ir with data from ICRP 107

Nuclide	Q _A (TBq)	Q _в (TBq)	Q _C (TBq)	Q _D (TBq)	А ₁ (ТВq)	А ₂ (ТВq)
^{135m} Ba	1.6×10 ¹	1.0×10 ³	3.3×10 ²	5.9×10 ⁻¹	2×10 ¹	6×10 ⁻¹
⁶⁹ Ge	1.3×10 ⁰	7.1×10 ⁰	1.7×10 ²	4.5×10 ⁰	1×10 ⁰	1×10 ⁰
^{193m} lr	8.3×10 ²	1.0×10 ³	4.2×10 ¹	4.2×10 ⁰	4×10 ¹	4×10 ⁰
⁵⁷ Ni	5.9×10 ⁻¹	2.0×10 ¹	8.9×10 ¹	3.3×10 ⁰	6×10 ⁻¹	6×10 ⁻¹
⁸³ Sr	1.4×10 ⁰	1.4×10 ¹	1.5×10 ²	8.7×10 ⁰	1×10 ⁰	1×10 ⁰
					DOCO	

Review of Q and A values

- Use of Monte-Carlo methods
 - State-of-the-art method
 - Including all particles of interest
 - Taking all relevant particle interactions into account
 - Considering secondary particles
 - E.g. bremsstrahlung
 - Several issues of the current Q system can be solved
 - Disadvantage: Computing time
- International working group defines conditions for Monte-Carlo simulations

EUROSAFE 2016

New Code Development: MCBAS

- Monte-Carlo Based A-value Simulator (MCBAS)
 - C++ based code
 - Currently under development by GRS
- Modular structure
 - Simple change or update of input files
 - Nuclear data
 - Dose coefficients
 - New nuclides
 - Neutron sources (AmBe, etc.)
- Decoupled from Monte-Carlo simulations

MCBAS – Decoupling from MC Simulations

- Time consuming MC simulations done in advance
 - MC simulations generate flux spectra
 - For all particles of interest (α , γ , β –, β +, n)
 - For certain energies
 - 5 keV steps up to 100 keV particle energy
 - 10 keV steps above 100 keV particle energy
 - Smaller steps for neutrons
 - For all relevant particles passing a surface at 1 m distance
 - All flux spectra form a database
 - Database serves as input for MCBAS

MCBAS – Advantages

- Independent of time consuming MC simulations
 - MCBAS is very fast
 - Installation on PCs without MC codes
- Modularity
 - Simple update of input files
- Fast calculation (without further MC simulations) of
 - New nuclides
 - Neutron sources
- Main Disadvantage: Energy uncertainty of real particle energy and next available simulated flux spectra
 - Max. 2.5 keV for energies below 100 keV
 Max. 5 keV for energies above 100 keV
 - Max. 5 keV for energies above 100 keV

MCBAS – Status and First Results

- A₁ values can be calculated
- Procedure for A_2 values will be discussed within the WG
- Qualification process is ongoing
- Improvement of statistics and error analysis to be performed
- First results: Comparison of dose rate coefficients *e*_{pt} for photons between MCBAS and BerQATrans

Nuclide	ė _{pt} (MCBAS) [Sv/Bq/h]	ė _{pt} (BER) [Sv/Bq/h]	Ratio	Nuclide	ė _{pt} (MCBAS) [Sv/Bq/h]	ė _{pt} (BER) [Sv/Bq/h]	Ratio
⁶⁰ Co	2.18E-13	2.2E-13	1.01	¹⁸ F	8.23E-14	9.2E-14	1.12
¹³⁴ Cs	1.43E-13	1.4E-13	0.98	¹⁹² lr	6.83E-14	7.5E-14	1.10
¹³⁷ Cs	5.33E-14	5.3E-14	1.00	⁸⁵ Kr	2.31E-16	2.1E-16	0.91
¹⁵⁴ Eu	1.08E-13	1.1E-13	1.02	¹⁰⁶ Rh	1.86E-14	1.9E-14	1.02
					E	UROS	SAFE

Thank you for your attention!

