Charlotte Cazala

Remediation of sites containing Uranium mining and milling waste:

accomplishments and remaining research needs

Remediation

Regulation

Research needs

Key informations

EUROSAFE 2016

Key informations

Production from 1948 to 2001 Operators: small compagnies, COGEMA, AREVA mines

~ 250 places

Waste rock	200 10 ⁶ t
ore	52 10 ⁶ t
uranium	0,080 10 ⁶ t
tailings	50 10 ⁶ t

Main objectives of remediation:

- Long term stability of the remediated area in terms of safety and public health
- Reduction of total land consumption and resulting needs for institutional control
- Prevention of risk resulting from intrusion
- Favour possible industrial or leisure activities on the land and remaining buildings
- Reduction of the impact as low as reasonably achievable
- Landscape integration, in co-operation with local stakeholders

EUROSAFE 2016

Remediation of factories

- dismanteled
- decommissioned
- Reuse of non radioactive sections

Remediation of tailings

- 19 storages (17 with solid cover; 2 with liquid cover)
- Open pit or natural thalweg
- Dam
- No objective of impermeability
- Control/ treatment of outflowing water

Source AREVA mines

Remediation of tailings

Remediation of Underground mines

- Backfilled with tailing and waste rock •
- Flooded
- Passive outflowing

EUROSAFE 2016

tailing

Water level

Remediation of open pits

- Filled with waste rock or water
- Water control/treament

Remediation

Regulation

Research needs

Regulation

All the sites

In accordance with international radiation protection rules

5 mSv/year \rightarrow TAETA < 1

 $TAET = \frac{external}{5mSv} + \frac{238U}{170 Bq} + \frac{PAE}{2mJ} + \frac{PAE}{6mJ} + \frac{226Ra}{7 000Bq} + \frac{U}{2mg} + \frac{U}{3 000 Bq}$

Tailings

- In situ confinement
- Effectiveness over a period of 300 years
- 5 scenarios
- From active to passive surveillance
 EUROSRFE

Regulation

administration

operator

Remediation

National regulation

Research needs

Already engaged program/actions

MIMAUSA:

Inventory of main information beginning of 2000 ministry of environment, operator and IRSN

GEP:

Recommendations for long term management from 2004 to 2010 IRSN, administration, operator, academic scientist, association

Radon:

How to assess the impact of mining operation?

Remaining needs

Reference level - background:

non reference level upstream, downstream measurements can we develop new proxi?

Water:

What is the effectiveness of chemical treatment? Can we switch from active to passive treatment? Can we assess the evolution of the quality of the water?

Remaining needs

Behavior in watershed:

contamination of sediment and soils what are the mechanisms of retention and how to limit them? how long are the pollutants trapped? how to manage contaminated materials?

Dam:

What is their resilience over the half live of ²²⁶Ra?

