Bracke, Guido; Charlier, Frank; Liebscher, Axel; Schilling, Frank; Röckel, Thomas

Does Deep Borehole Disposal (DBD) of HLRW

have a chance in Germany?

Volume of HLRW in Germany

- Spent fuel elements
- Vitrified waste
- Spent fuel pebbles

Concept

- Disposal depth of 1500 3500 m
- Multiple barrier system with clay and salt layers (alternating strata)

Some questions

- Diameter of borehole ?
- Container ?
- Availability in Germany ?
- "containment providing rock zone" ?
- Reversibility ?

Deep Borehole Container – Retrieval (DBC-R)

Ca. 11 000 containers

Requirements for container (wall thickness)

Casing / container

How many boreholes ?

Disposal depth	Wall thick- ness DBC-R	DBC-R per borehole	Number of boreholes	Diameter of borehole
3 000 - 3 600 m	4.5 cm	103	107	75 cm
3 000 - 4 200 m	6.5 cm	205	55	80 cm
3 000 - 5 000 m	10 cm	363	31	90 cm

Drilling technology

Drilling Site for 18 boreholes

© 2015 Google © 2009 GeoBasis-DE/BKG

Google earth

Borehole seals: Example for salt

Containment providing rock zone (CPRZ)

EUROSAFE 2016

Reversibility: Retrieval / Recovery

• ... but will container last for 500 years ?

Site Selection Procedure

Geoscientific requirements / criteria	applicable	Comment
Exclusion	\checkmark	Deep geological disposal !
Minimum	✓	No maximum depth !
Weighting	(√)	 gas compatibility temperature (disputed) hydrochemistry of disposal zone and CPRZ)

Long-term Safety Assessment *

* Brady, P.V., Arnold, B.W., Freeze, G.A., Swift, P.N., Bauer, S.J., Kanney, J.L., Rechard, R.P., Stein, J.S.: Deep borehole disposal of high-level radioactive waste. SAND2009-4401. Ed.: Sandia National Laboratories, DOI 10.2172/985495, 75 pp., Sandia National Laboratories: Albuquerque, New Mexico 87185, 2009. EUROSAFE 2016

Research and Development

- Borehole diameter of 0.75 m beyond today's standard shelf technology
- Considered feasible for 3 600 m
- Concept to be detailed (e. g. container, monitoring, technology)
- Operational and long-term safety analyses
- Feasibility demonstration (drilling, disposal and retrievability)
- Development of containers for recoverability for 500 years

Summary

- Concept shown
- Container
- Disposal operation
- Geoscientific requirements and criteria
- Safety analysis
- Research and development

Some advantages

- \Leftrightarrow
- Multiple barrier system (great depth)
- Manless disposal
- Several sites possible
- No proliferation
- Less costs and faster implementation

and disadvantages

- Research and development
- Exploration for every drilling site
- Corrosion of containers
- Recoverability

. . .

DBD should / could be a feasible and alternative technical option for deep geological disposal in Germany.

Conclusions

Needs active support of research and development

The requirement of recoverability for 500 years should be reconsidered

