Mitja Uršič, Matjaž Leskovar, Renaud Meignen, Stephane Picchi, Julie-Anne Zambaux

Fuel coolant interaction modelling in sodium cooled fast reactors

Outline

- Introduction
- Premixing phase
- Explosion phase
- Conclusions

Introduction

- Four major accident scenarios are relevant for SFR
 - Unprotected Loss of Flow (ULOF)
 - Total Instantaneous Blockage (TIB)
 - Unprotected Transient Over Power (UTOP)
 - Unprotected Loss of Heat Sink (ULOHS)
- Fuel-sodium interaction issues
 - Debris coolability
 - Vapour explosion, may occur during core melt accident when rapid and intense heat transfer follows interaction between molten material and coolant. Strength depends on
 - melt mass, void, melt solidification

Introduction

- Capabilities of FCI codes to cover fuel-water interaction in reactor cases were demonstrated in the frame of
 - OECD SERENA
 - EU SARNET
- Applicability of the premixing and explosion models in the MC3D code (IRSN, France) to cover fuel-sodium interaction is currently under examination

EUROSAFE

Premixing

- Premixing phase is important
 - To determine initial conditions of a possible vapour explosion
 - Drives formation of debris bed on the core catcher and thus potential coolability of corium
- Key processes
 - Melt fragmentation
 - Heat transfer
 - Void build-up

Premixing: melt fragmentation

• Reality

- Melt fragments due to various instabilities created at melt-coolant contact
- Different melt scales are often intermixed
- Feedback effect of vaporization
 - water: mainly in film boiling conditions
 - sodium: also important effect of transition and nucleate boiling

Vapour pressure

Premixing: melt fragmentation

Modelling

- Dominating role of Kelvin-Helmholtz mechanisms
 - consensus obtained during the OECD SERENA project for vertical jets
 - differences of water and sodium density are not sufficiently important to anticipate differences in fragmentation rate
- Concept of primary and secondary fragmentation
- Local and global models
 - at sub-cooled conditions a quasi liquidliquid behaviour with small impact of boiling may be expected
 - around saturation conditions a strong impact of boiling

Density

Premixing: melt fragmentation

- Experiments with sodium
 - Two different behaviours might be anticipated
 - quasi liquid/liquid behaviour with small impact of boiling
 - strong impact of boiling process as it is known that transition boiling (and also nucleate) is a quite dynamic process
 - Experiments with sodium all show a turbulent behaviour, attributed to transition boiling, accompanied by pressure events
 - Thermal effects on fragmentation rate should then be studied with more precision

Jet break-up length

Radiative

- Emissivity of water ~0.9
- Emissivity of sodium ~0.05

- Film boiling heat transfer in water is well characterized
- Theoretical background of Epstein-Hauser (EH) correlation makes it the preferred choice for the characterization of film boiling heat transfer in FCI codes
- EH based approach
 - Reasonably describes experiments with water
 - On theoretical level the approach could be also applicable for sodium, however applicability shall be demonstrated with experiments

Modified EH correlation vs. experimental data

- In some experiments with subcooled water and the surface temperature above the homogeneous nucleation temperature the heat transfer was higher than typically observed in film boiling regime
- Existence of such conditions during FCI in sodium shall be experimentally investigated because the expected sub-cooling in SFR is in range of few hundreds K

Heat flux in sub-cooled conditions

Extracted from reference:

H. Honda, H. Takamatsu, H. Yamashiro, Heat-transfer characteristics during rapid quenching of a thin wire in water, Heat Transfer - Japanese Research, 21(8) (1992) 773-791.

Premixing: void build-up

Water: fraction of heat used for vaporization in TREPAM forced convection experiments

Sodium: fraction of heat used for vaporization in Farehat et al pool boiling experiments

Reference:

G. Berthoud, Use of the TREPAM hot wire quenching test results for modelling heat transfer between fuel and coolant in FCI codes, Nucl Eng Des, 239(12) (2009) 2908-2915.

Reference:

A. Le Belguet, G. Berthoud, M. Zabiégo, Analysis of film-boiling heat transfer on a high temperature sphere immersed into liquid sodium, 15th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH-15, (2013).

Premixing: void build-up

- Parametric approach
 - Vaporization vs. heat up
 - 100% of heat for vaporization at saturated conditions
 - 100% of heat for bulk heat up above threshold sub-cooling
 - Bubbles diameter
 - user parameter
- Continuous vapour generation
 - Vaporization vs. heat up
 - net mass of vaporization could be assessed using EH approach
 - bubbles condense in sub-cooled conditions
 - Bubbles diameter
 - size of generated bubbles is same as of droplet

Explosion

- Strength of explosion depends on
 - Ability of melt droplets to fine fragment
 - Presence of void
 - Ability of coolant to evaporate
- Key processes
 - Fine fragmentation
 - Heat transfer
 - Pressurization

Explosion: fine fragmentation

- Hydrodynamic
 - Critical conditions
 - Weber number
 - modified Weber number
 - Fragmentation rate
 - dimensionless break-up time
 - Fragments size
 - user parameter
 - Weber number
- For water hydrodynamic fine fragmentation is considered as dominant
- Importance of thermal fine fragmentation should be examined for sodium.

Critical conditions for liquid and partly solidified droplets in water

Reference:

M. Uršič, M. Leskovar, M. Burger, M. Buck, Hydrodynamic fine fragmentation of partly solidified melt droplets during a vapour explosion, Int J Heat Mass Tran, 76 (2014) 90-98.

Explosion: heat transfer

• Water

- Analysis of TREPAM experiments indicates that Epstein-Hauser approach could be sufficient for water
- Additional experimental data for higher relative velocities needed
- Sodium
 - No experimental data
 - EH approach could be applicable on theoretical level

Parameters map for different heat transfer experiments performed at conditions relevant for FCI

Explosion: pressurization

Explosion: pressurization

- Direct boiling
 - Vaporization
 - ability to boil
 - mode of heat transfer at significant velocities and high-pressures
 - fraction of heat used for vaporization at sub-cooled conditions
 - Effect of condensation on heat transfer in sub-cooled conditions
- Micro-interaction
 - Entrainment rate of coolant

Vapour pressure

Conclusions: premixing

- Status
 - Melt fragmentation
 - experimental data and comparable governing sodium and water properties are indicating that similar jet fragmentation mechanisms are acting in water and sodium
 - Kelvin-Helmholtz approach
 - secondary fragmentation is under investigation
 - Heat transfer
 - Epstein-Hauser approach in film boiling
 - interpolation in transition boiling
 - Void build-up
 - parametric dissipation in film boiling
 - continuous vapour generation

- Needs for sodium
 - Melt fragmentation
 - impact of jet diameter, jet velocity and sodium sub-cooling on break-up length and debris size spectrum
 - thermal fragmentation

- Heat transfer
 - sodium experiments
 - effect of sub-cooling on film boiling regime
 - criteria for temperature range of different regimes
- Void build-up
 - DNS like for assessing fraction of heat used for vaporization

Conclusions: explosion

- Status
 - Fine fragmentation
 - focus on hydrodynamic fragmentation
 - Weber number for critical conditions and/or fragments size of liquid droplets
 - modified Weber number for critical conditions of partly solidified droplets
 - Heat transfer
 - Epstein-Hauser based approach
 - Pressurization
 - direct boiling
 - micro-interaction

- Needs for sodium
 - Fine fragmentation
 - impact of solidification on droplet fine fragmentation

- Heat transfer
 - experiments with sodium
- Pressurization
 - DNS like around fragments

EUROSAFE 2016