Dr. lan de CURIERES

Secondary side corrosion of SG tube alloys in typical secondary side chemistries

OPEX of IGA/ODSCC (SG tube corrosion cracking)

• 600TT

- More than 200 tubes affected worldwide
- Korea (1990+), USA (2002+), France (2012+)
 - Mostly at the top of tubesheet location

• 800NG

- About 200 tubes affected in 2010 (IAEA)
- Sometimes after about 10 years of operation (4 years after TTS denting)
- **690TT**: nothing reported yet
 - But dented tubes exist
- Root cause analyses
 - Sometimes « non-optimized » microstructures
 - Sometimes denting (TTS)
 - Very often, Pb, S encountered. Also Al and Si

Insights on stress corrosion cracking

From CEA

EUROSAFE 2016

Some recent ODSCC cracks

ODSCC in alloy 800NG tubes Circumferential cracks network 12 years of operation From Gonzalo, Fontevraud 8

ODSCC in alloy 600TT tubes Circumferential cracks network From Boccanfuso, 17th E. Deg

Safety stakes of IGA/ODSCC

SGTR (steam generator tube rupture)

- Is one potential cause for core melting
 - Probability of 10⁻⁸/reactor.year for a 1-2 tubes « small » SGTR
 - In addition high risk of radioactive product release to the atmosphere
- IGA/ODSCC
 - Affects thousands of tubes worldwide
 - Many instances of circumferential cracking
- Tougher detection by NDE than primary side cracks
 - Deposits, copper, TSP intersections...

Stakes of IGA/ODSCC

- R&D: risks of ODSCC exist
 - Even for corrosion resistant alloys
- OPEX for 600TT and 800NG
 - When ODSCC occurs, a few dozen tubes may be affected per SG
 - 2-3 affected tubes may be enough for a severe safety problem if SGTR
- Complexity of chemistries
 - No predictive modeling likely to be available
- Need for assessment tools
 - Allowing plant chemists to specifically act
 - Based on « easy-to-access » data for utilities
 - Actual chemistry: HOR (hide-out-return), sludge lancing analyses

Necessity of a domains of vulnerability approach EUROSAFE 2016

Secondary side chemistry - insights

Role	Species	Conc., ppl		
pH control	NH ₃	X		
O2 decrease	N_2H_2	$\leq 8 x O_2$		
Leaks	02	< 10		
Boil off remnant	H ₂	1		
Corrosion	Cu	< 1		
product	Fe	< 5		
	Na	< 5		
Contaminant	Cl ₂	< 10		
	SO4	< 10		

Secondary Water Chemistry

• What is specified

 What is actually encountered on SG tubes

Very complex local chemistries despite good operating procedures

What is a typical local secondary side chemistry?

- Analysis of OPEX over 25 years
 - Sludge lancing, HOR data...
- Many deposits/sludge at the TTS location, with a typical composition
 - Magnetite (Fe₃O₄) as balance
 - 2-10% aluminosilicates
 - <5 % of calcium species</p>
 - 0.1 to 0.2% wt of Pb in sludge at the tube contact
 - Up to 1,4% of Pb in sludge collars (if pollution)
 - Presence of S (up to 10 000 ppm soluble from HOR)
 - Cu sometimes

From Brechun, 2015

- Crevice pH_T estimated by utilities
 - Multeq, OLI, MRI...
 - Ranging from 4 to 9 (range where test data are often missing)

No precise knowledge of what may happen in these conditions EUROSAFE | 2016

The sulfur case

- Sulfates are measured at the SG blowdown
 - Sulfates in crevices may be 50 000x that measured during HOR
- In the operating SG, sulfates may be reduced
 - Magnetite, hydrazine...
 - Up to 10% of sulfur species in a « reduced » condition
 - According to pH_T

Need to consider some reduced sulfur species in tests

From Delaunay, 2012

nsei

Test protocol

EUROSAFE | 2016

Material and test specimens

Chemical compositions

Material	Heat	C (%)	Si (%)	S (%)	P (%)	Mn (%)	Ni (%)	Cr (%)	Cu (%)	Co (%)	Ti (%)	Al (%)	Fe (%)
600TT	WF489	0.027	0.27	0.001	0.012	0.83	73.1	16.2	0.02	0.018	0.24	0.16	8.9
690TT	116201	0.017	0.173	<0.001	<0.015	0.33	58.0	29.84	<0.01	<0.035	0.37	0.048	11

Fullfill the RCC-M requirements

Test specimens : Reversed U Bend

RUB (1/6 SG tube) Pre oxidized in nominal AVT environment

σ~550MPa, ε^p~9-10%

9 specimens per capsule

6 sections per tube

Test matrix

Type of environment

Sludges : $Fe_3O_4 + 0.8\%$ CaO + 5% of Al_2O_3/SiO_2 with Si/Al=4

Liquid phase: H_2O + 3ppm ETA + 1 ppmNH₃ + 3M NaCl + N_2H_4

pH_T and type of pollution

	рН _т = 4	рН _т = 7.5	рН _т = 9
2000 ppm of Pb in sludge as PbO	\checkmark	\checkmark	\checkmark
2000 ppm of Pb in sludge as (91% PbSO₄ 9% PbS)	\checkmark	\checkmark	\checkmark
8000 ppm of soluble SO ₄ ²⁻ as (91% Na₂SO₄ and 9% Na₂S)	\checkmark	\checkmark	\checkmark
Pb/S free sludge	\checkmark	\checkmark	\checkmark

 pH_T adjusted by NaOH or HCI/H₂SO₄ based on thermodynamical simulations

Global preliminary results

			рН _т = 4		рН _т = 7,5			
		WF422 600MA	WF489 600TT	116201 690TT	WF422 600MA	WF489 600TT	116201 690TT	
Pb	Solid	с	с		С			
	Liquid	-		С	-	-	-	
(PbO)	Steam	-		С	-	-	-	
Pb and S	Solid	С	С		С	С		
	Liquid	-	С	С	-	С		
(PbSO₄/PbS)	Steam	-	С	С	-	С		
S	Solid	С						
(Na₂SO₄/Na₂S)	Liquid	-	С	С	-			
	Steam	-	С		С	С	-	
No analyzis	_	•						

No analyzis

GC and/or IGA

No indications

С

Cracks observed from the surface

Test at pH_T 9 not yet finished December 2016

Examination of specimen EUROSAFE 2016

Optical examination $- pH_T = 4 - liquid phase$ No observable sign apart from oxidation

690TT

PbO

 $PbSO_4$

EUROSAFE 2016

600TT

SEM cross sections $- pH_T = 4 - liquid phase$

IGA, IGSCC and GC (600TT) vs IGSCC (690TT) confirmed

600TT

PbO

690TTROSAFE 2016

SEM cross sections – $pH_T = 4$

Summary

		600	ТТ	690TT			
		Max. depth	Crack density* (/ mm)	Max. depth	Crack density* (/ mm)		
	Liquid	180 µm	2	110 µm	0.9		
PbO	Wet steam	20 µm (IGA)	/	63 µm	0.5		
Dheo	Liquid	180 µm	~3	60 µm	0.7		
PbSO ₄	Wet steam	78 µm	1	45 µm	0.32		
	Liquid	79 µm	0.7	92 µm	0.2		
Na ₂ SO ₄	Wet steam	31 µm	0.3	/	/		

* Depth > 15 μm, specimen width ~10 mm EUROSAFE 2016

SEM chemical analyses – pH_T = 4 IGA, IGSCC and GC (600TT) vs IGSCC (690TT) confirmed

SEM - EDS

- No Pb or S apart from traces
- AI, Si clearly detected

600TT PbSO₄ sludge

EUROSAFE

2016

	0	Mg	AI	Si	S	Ca	Ti	Cr	Fe	Ni	Pb
WF489-027 Area 1 EDS Spot 1				0,7				16,8	9,6	72,9	
WF489-027 Area 1 EDS Spot 2	2,7	1,7	1,1					17,6	9	67,9	
WF489-027 Area 1 EDS Spot 3	1,6		1,4	0,6				16,6	9,3	70,5	
WF489-027 Area 1 Selected Area 1	21,8		0,6	1,3		0,5	0,5	27,1	15,8	31,5	0,7
WF489-027 Area 1 Selected Area 2	1,5			0,7				16,8	9,3	71,7	

TEM – 690TT – PbO – pH_T 4 – liquid phase

EDX – ChemiSTEM of the crack

2 um

 Presence of O and Pb (1.5 – 2 wt% around both crack and Cr rich clusters)

EUROSAFE 2016

TEM – 690TT – PbSO₄ – pH_T 4 – liquid phase

« Pure » Cr clusters

- Surrounded by oxides
- Alloy disturbances prior to oxidation

Pb at the metal/oxide interface

~1% wt of Pb

Conclusions (1/2)

7 IRSN performed corrosion tests on SG tube alloys

- In typical local secondary side environments
 - Based on opex from 20 years of sludge analysis
 - pH_T in the range quoted by utilities, 4, 7 and 9
- Two goals
 - Identifying domains of vulnerabilities in « typical » chemistries
 - Understanding potential damage mechanisms
- pH_T 4
 - All alloys suffer from corrosion
 - GC, IGA and IGSCC (IGSCC only for 690TT)
 - Alloy 690TT is not immune and IGSCC (<u>no TG</u>) could be encountered, even with S alone (no Pb)
- pH_{T} 7.5 and 9
 - Pending results Already 600MA and 600TT susceptible at pH₂7.5
 2016

Conclusions (2/2)

- Examinations confirm the involvment of Pb and S in the currently observed damage
 - 2 potential mechanims currently assumed
 - Research work going on
- Tests performed identify potential risks
 - Confirmed by OPEX (600TT)
 - Increase the available knowledge for assessing the risk of currently operating components

