K. Nünighoff - T. Klomberg - M. Kund - J. Oldenburg - L. van Aernsbergen - L. van der Wiel

Development and Application of Modern Safety Requirements as Part of GRS Technical Support for ANVS

Background

- Dutch licensing authority decided to develop a modern set of safety requirements for NPPs und RRs
 - Plans to build NPP in The Netherlands
 - Modification project of a RR
 - New built project of a RR
 - Integrated regulatory framework for NPPs and RRs required
- GRS was contracted to provide enhanced technical support during the pre-licensing activities
 - Development of safety requirements
 - Review process of the safety analysis report (SAR)

Boundary Conditions for the Dutch Safety Requirements for Nuclear Reactors

- Requirements should be **technological neutral**
 - Applicable to both PWR and BWR
 - Not tailored to a specific vendor design
- Requirements should be goal oriented
 - Exceptions: prescriptive requirements if a specific technical solution is expected by the regulator
- Most recent developments in nuclear safety should be taken into account

Development Steps for Dutch Safety Requirements

- International basis: IAEA, European Council and WENRA
- Implementation of WENRA Defence-in-Depth Concept
- Implementation of a protection concept against internal and external hazards
- Include lessons learned from Fukushima NPP accidents
- IAEA Expert Mission to review the Dutch Safety Requirements
- Develop objectives and goals of
 - Organisational Review Plan
 - Technical Review Plan

Implementation of WENRA Defence-in-Depth Concept

Levels of defence in depth	Associated plant condition categories	Objective	Essential means	Radiological consequences
Level 1	Normal operation	Prevention of abnormal operation and failures	Conservative design and high quality in construction and operation, control of main plant parameters inside defined limits	Regulatory operating limits for discharge
Level 2	Anticipated operational occurrences	Control of abnormal operation and failures	Control and limiting systems and other surveillance features	
Level 3	Level 3.a Postulated single initiating events Level 3.b Postulated multiple failure events	Control of accident to limit radiological releases and prevent escalation to core melt conditions	Reactor protection system, safety systems, accident procedures Additional safety features, accident procedures	No off-site radiological impact or only minor radiological impact
Level 4	Postulated core melt accidents (short and long term)	Control of accidents with core melt to limit off-site releases	Complementary safety features to mitigate core melt, Management of accidents with core melt (severe accidents)	Limited protective measures in area and time
Level 5	-	Mitigation of radiological consequences of significant releases of radioactive material	Off-site emergency response Intervention levels	Off-site radiological impact necessitating protective measures

Implementation of a Protection Concept against Internal and External Hazards

- For external hazards: design basis events with a exceeding frequency of 10⁻⁴ 1/a
- **Combination** of hazards
 - Frequency
 - Possible damage of SSCs
- Loadings shall be derived from a hazard curve
- Consideration of hazards exceeding the design basis events
- Availability of redundant trains
 - Internal hazards: loss of only redundant train
 - External hazards: no failure of redundant trains

Lessons Learned from Fukushima NPP Accidents

- A diverse ultimate heat sink is required
- Accessibility and habitability of main control room, supplementary control room and emergency control centre
 - Conditions during and after external events
- Enhanced Requirements for **emergency power supply**
 - Alternative emergency power supply
 - Protected connection points for mobile equipment
- Spent fuel pool with gas-tight barrier

Structure of Dutch Safety Requirements

Objective and Goals of Organisational Review Plan

Goals	 Efficient and effective review Guidance for the organisation / preparation of the review phase 		
Objectives	 Establishing organisational and communicational means before SAR submittal 		
	 Enhancing common understanding of review process Description of key success factor 		
	 Communication of ANVS expectations to all stakeholders 		
	 Responsibilities clearly communicate 		
\rightarrow	 Efficient use of resources 		
	EUROSAFE 20		

Structure of Organisational Review Plan

- Recommendations for the pre-review phase
- Selection of examples of arrangements
- List of action items
 - Checklist with specific actions to be performed

Communicational Arrangements

Communication only to adjacent organisations

Objective and Goals of Technical Review Plan

Goals	 Efficient and effective review Guidance for the technical review of a SAR 	
Objectives	 Contributing to a high quality review (particularly, all safety aspects covered) 	
	 Promoting a strictly safety-oriented review approach 	
	 Uniformity of the review Harmonized review approach among the reviewers all applicants shall be treated equally → transparency 	
	 Communication of expectations concerning Scope, Structure and level of detail in the SAR 	

Common Review Steps for Technical Areas

- From high-level safety
 considerations to more detailed
 (technical) issues
 - see multi step process of ONR's GDA process

Stepwise process

- to improve traceability and predictability of the reviewers evaluation
- to support applicant drafting SAR
- Primarily for design related issues
 - but approach also applicable for non-design related issues

Content of the Technical Review Plan

- **Description** of the **general review approach**
- For each review area¹⁾ generic description of the expected content relevant for nuclear safety
- Addresses interfaces between review areas
 - SAR chapters reviewed by different experts
 - Example 1: I&C is a own review area, but has interfaces to nearly all technical review areas
 - Example 2: Internal hazards addressed in several review areas

¹⁾ Ideally, a review area represents a chapter of the SAR

Summary

- Dutch Safety Requirements for NPPs and RRs represent the most recent state of the art in science and technology
- A Review plan was developed for a efficient and effective review process, including
 - Organisational Review Plan
 - Technical Review Plan
- Currently, both documents are applied in SAR review processes

