Marita Döhler

The Estimation of potential Consequences from the Sabotage of Nuclear Material Transports

EUROSAFE

Contents

- Motivation: Estimation of potential Consequences from Sabotage of Nuclear Material Transports
- Examples for Sabotage
- From Sabotage of Nuclear Material Transports to potential Consequences
- Reseach Projects
- Prospects

Transportation Threat Examples

Motivation

- Likelihood of terrorist sabotage attack against transports of nuclear material
- Sabotage attack could generate a particulate radioactive matter from the inventory of the cask
- Airborne release to the environment
- Potential Radiological consequences?!

Motivation

Nuclear Security Series Publications, INFCIRC 225, Rev. 5:

- Radioactive material has to be protected against unauthorized removal since it could have significant consequences if dispersed or used otherwise for a malicious
- ...the State should define protection requirements that correspond to the level of potential radiological consequences.

Assessing radiological consequences important for graded approach!

Examples for Sabotage

- Explosives
 - Directly put on the transport configuration
 - On a vehicle next to the conveyence
- Conical Shaped Charges (CSC)
- Explosively Formed Projectiles (EFP)

Conical Shapes Charge

- Highly sophisticated weapon
- Can be shot from a high distance
- High penetration depth

Explosively Formed Projectile (EFP)

- Not very sophisticated
- Standoff distance: Few m
 - Penetrates armour:
- Few meters to hundreds of meters
- 0.4 0.8 times the diameter

Examples for EFP's

Different sizes:

- Roadside Bomb
- Pocket EFP

EFP's are built easily:

- Explosive
- Pipe (like drainpipe, ...)
- Layer (copper, ...)

From Sabotage to potential Consequences

Transport Configuration

From Sabotage to potential Consequences

First step:

- Damage Pattern of:
 - Cask
 - Inventory
- Airborne Release Fraction (ARF) of inventory (respirable aerosols)
- Aerosol transport process from the inside of the cask to the environment

From Sabotage to potential Consequences

Second step:

- Determination of dispersion of respirable particles
- Dose calculation

Research Projects

Performing experiments to:

 Understand the mechanisms of different sabotage attacks on transport casks

Obtain empirical correlations of kind of sabotage and ARF

• Verify numerical simulations

Create a predictive model to assess radiological consequences of sabotage attacks on various transport configurations

Research Projects of GRS

- Conical Shaped Charge: Different research projects of GRS in collaboration with Fraunhofer-Gesellschaft, IRSN and Sandia National Laboratories
- Explosives: Actual research project in collaboration with FhG ITEM and FhG EMI, funded by BMUB
- Explosively Formed Projectile: Actual research project in collaboration with FhG ITEM and FhG EMI, funded by BMUB

EUROSAFE

Explosives: Experimental Setup

- Experiments were performed at Fraunhofer EMI, Germany
- Experimental Setup was designed and installed by Fraunhofer ITEM, Germany

Towards Convergence of Technical Nuclear Safety Practices in Europe

Targets

EUROSAFE

What was measured?

- Concentration of respirable fraction inside the cask
- Temperature
- Pressure

Helping to model the potential outflow of gases

Qualitative Results

E U R O S A F E

Qualitative Results

Smaller charge:

Bigger charge:

EFP: Experimental Setup

- Experiments were performed at Fraunhofer EMI, Germany
- Experimental Setup was designed and installed by Fraunhofer ITEM, Germany

Tawards Convergence of Technical Nuclear Safety Practices in Europe

Projectile

- Bell-shaped flyer plates embedded in a sabot
- Shot with a powder gun

Cask Mock-Up

- Closed box
- Stainless-steel wall segments of variable thickness

Targets

Three differents kinds of targets were used:

What was measured?

- Actual impact velocity of EFP directly in front of cask
- Concentration of respirable fraction inside and outside the cask
- Temperature inside the cask
- Pressure inside the cask

Helping to model the potential outflow of gases

Qualitative Results

Pictures of the high speed camera:

 Projectile flying towards the cask mock-up with the stainlesssteel wall segment

Qualitative Results

Tawards Convergence of Technical Nuclear Safety Practices in Europe

Prospects

- Working on models to quantify the pattern of damage of:
 - Cask
 - Inventory
- With this: Determination of the source term, i.e. release fraction defined as the fraction of the inventory released as (respirable) aerosols

Thanks for your attention!