N. Lesparre - J. Cabrera - C. Gélis - J. Marteau

Potential of muon flux density and electrical resistivity imageries for detecting and characterizing discontinuities in a clay medium at the Tournemire URL

Ontext

- The TOMUEX project: Tomography experience by analysis of the muons' flux applied to the massif of Tournemire
- Electrical resistivity imagery
- Onclusions

Towards Convergence of Technical Nuclear Safety Practices in Europe

EUROSAFE

Electrical imagery

Nuclear waste storage

Cigeo: project of deep nuclear waste storage by ANDRA hosted in a clay layer of low permeability at Bure (Meuse)

 \Rightarrow Geophysical imagery in the surrounding rock: \rightarrow localise structures allowing radionuclide circulation to the biosphere

Electrical imagery

Tournemire experimental platform

A platform dedicated to experimental tests for supporting expertise

- Geological context similar to Cigeo \rightarrow clay layer with a low permeability.
- Geological structures delimited

 \rightarrow geometry relatively well known.

Transfs Convergence of Technical Nuclear Safety Practices in Europe

000

Evaluate the capacity of geophysical methods to detect tectonic faults of small displacement

Objects

- Structures observed on gallery walls and boreholes:
 - \rightarrow strike-slip faults of small vertical displacements.

• Structures observed in the region:

 \rightarrow karstic systems that may present huge cavities.

Methods

- Muons flux density imagery:
 - \rightarrow localize macro-porous regions.
- Electrical resistivity imagery:
 - \rightarrow localize fractured regions allowing water penetration.

Electrical imagery

Muons: definition

- Charged particles produced in atmospheric particles shower,
- Rest mass: 105 ${\rm MeV}/c^2$ (electrons $\rightarrow 0.5 \; {\rm MeV}/c^2)$,
- Lifetime: $2.2\,\mu\mathrm{s}$,
- Weak cross-section
 - \rightarrow low interactions with matter.

(Anderson & Neddermeyer, 1936 ; Bartlett, 2004).

Operational principle

- Rock crossing \rightarrow attenuation of the muons' flux, \rightarrow measure of the medium opacity : $\rho = \int_{\Gamma} \rho(x) dx$ (g/cm²).
 - \Rightarrow Deduction of the **density** distribution

Towards Convergence of Technical Nazimur Sofiety Practices in Function

Muon imagery

Electrical imagery

Simulation of an experience

- Telescopes' angles and capacity of detection model;
- knowledge of the topography
 - \rightarrow thickness of the sounded rocks ;
- knowledge of the medium geology
 - \rightarrow computation of the rock opacity \Rightarrow muons' flux estimation;

Electrical imagery

Tomography of the massif of Tournemire

Configuration of the acquisition network: aerial view

EUROSAFE

Towards Convergence of Technical Nuclear Safety Proctices in Europe

Electrical imagery

Tomography of the massif of Tournemire

Configuration of the acquisition network: aerial view

EUROSAFE

Towards Convergence of Technical Nuclear Safety Practices in Europe

Electrical imagery

Tomography of the massif of Tournemire

Configuration of the acquisition network: aerial view

Towards Convergence of Technical Nuclear Safety Practices in Europe

Muon imagery

Electrical imagery

Muons' flux to density

Comparison of measurements

 $\begin{array}{l} \text{W08 PM60} \rightarrow \Delta T = 100 \text{ days} \\ \text{S08 PM10} \rightarrow \Delta T = 78 \text{ days} \\ \text{W08 PM14} \rightarrow \Delta T = 77 \text{ days} \end{array}$

Muon imagery

Electrical imagery

Muons' flux to density

Comparison of measurements

 $\begin{array}{l} \text{W08 PM60} \rightarrow \Delta T = 100 \text{ days} \\ \text{S08 PM10} \rightarrow \Delta T = 78 \text{ days} \\ \text{W08 PM14} \rightarrow \Delta T = 77 \text{ days} \end{array}$

Muon imagery

Electrical imagery

Muons' flux to density

Comparison of measurements

 $\begin{array}{l} \text{W08 PM60} \rightarrow \Delta T = 100 \text{ days} \\ \text{S08 PM10} \rightarrow \Delta T = 78 \text{ days} \\ \text{W08 PM14} \rightarrow \Delta T = 77 \text{ days} \end{array}$

Muon imagery

Electrical imagery

Location of the density contrasts

Aerial view

EUROSAFE

Towards Convergence of Technical Nuclear Safety Practices in Europe

Electrical imagery

Location of the density contrasts

Profile view

Electrical imagery

Density inversion

Muon imagery

Electrical imagery

First results

EUROSAFE

Electrical imagery

Configuration of the electrode network

- At surface: 96 electrodes, inter-electrode distances 5 to 10 m;
- In depth: 6 electrodes at the end of 10 m long boreholes.

Comparison to previous experiments

Muon imagery

• Data acquired at large scale in 2007 ($\Delta E = 40 \text{ m}$);

Context

• Data acquired with a smaller resolution in 2010 ($\Delta E = 2$; 4; 8 m).

Electrical imagery

00000

Comparison to previous experiments

Towards Convergence of Technical Nuclear Safety Practices in Europe

EUROSAFE

E

Comparison to previous experiments

Conclusions

Muons' flux experiment:

- Detection of muons' flux from three locations;
- Reconstruction of the medium density distribution.

Observations:

- $\bullet\,$ Very low density region in the Aalenian layer \to karstic cavities.
- Low density zones in limestones \rightarrow sub-vertical fractures.

Electrical imagery experiment:

- Data acquisition in transmission between surface and galleries ;
- Model of the experiment and first inversion.

Observations:

- Resistivity contrasts in agreement with previous experiments;
- High heterogeneity of the limestone layers;
- Resistivity contrasts in the clay layer.

117. 7 16 MG

Electrical imagery

Acknowledgements

Gilles Alcade, Evelyne Barker, Sylvain Bassot, Pierre Dick, Anthony Julien, Bruno Combes, Patrice Desveaux, Éric Martinez, Jean De Bremond D'Ars, Dominique Gibert, Bruno Kergosien, Serge Gardien, Jean-Christophe Ianigro, Kévin Jourde.

Towards Convergence of Technical Nuclear Safety Practices in Europe