Andreas Wielenberg (GRS) – Siegfried Babst (GRS) – Gerhard Gänssmantel (GRS)

Lessons Learned on Probabilistic Methodology for Precursor Analysis

Brussels, 3rd November 2015

EUROSAFE

Overview

- Introduction
- Emerging Methodological Issues from Precursor Assessments
- Examples from GRS Experience
- Conclusions

Introduction

- Precursor studies utilize PSA models to evaluate the risk significance of events from operating experience
- Precursor event if e.g. 10⁻⁶ CCDP exceeded
- GRS performs precursor assessments on behalf of German federal regulator BMUB since 1985
 - Complement deterministic operating experience (OPEX) assessment
 - Identify events with reduced margins, exposed weaknesses
 - Identify risk significant events for in-depth analysis
- GRS involved in international precursor studies activities
- Our insights on probabilistic methods and assessment related to precursor studies

Emerging Methodological Issues Completeness of PSA models

- Precursor assessment of OPEX can require model extension
- Gaps in PSA models and potential improvements of methods
- Observations
 - Events motivate the inclusion of new CCF groups/failure modes
 - Identify additional operator actions for control of event sequences to be included in PSA models
 - PSA models often neglect seasonal variations/conditions
 - Simplifying/Deterministic assumptions can mask existing vulnerabilities
 - Re-examine IE grouping & accident sequence modelling in light of new/unexpected plant behaviour from OPEX

Towards Convergence of Technical Nuclear Safety Practices in Europe

- Events spanning an extended time period
 - Precursor analysis usually aggregates risk figures for the full period
 - PSA results usually with reference to 1 year / operating year
 - Plant configuration changes hard to consider for long duration
 - Aggregation might be misleading, limit to e.g. 1 year impact, if sensible
- Overlapping events and changes in plant configuration
 - Explicitly time-dependent assessment necessary
 - Use time-dependent modelling and risk monitor models as available

- Actual plant configuration in precursor models
 - Common PSA models often include summary unavailabilities for planned maintenance in plant operating states (POS)
 - Need for a "baseline" PSA models with optional maintenance & POS unavailabilities
 - Risk monitor model constitutes important enhancement
- Treatment of potential CCF
 - CCF event quantification assumes test/detection intervals
 - Precursor analysis period might be significantly smaller
 - Reconsider CCF quantification, but
 - Consider potential CCF impact (see example below), too

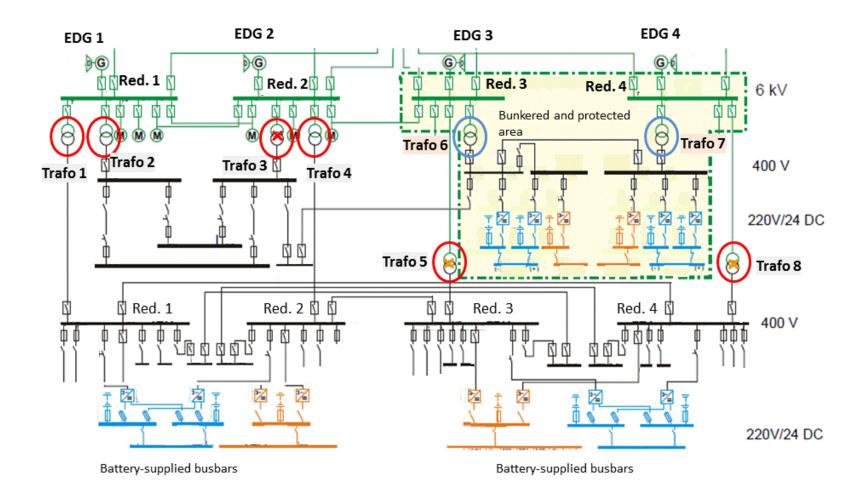
- Operator actions and HRA issues
 - OPEX shows that operator actions not considered (relevant) in PSA model may lead to successful control of event
 - Additional operator actions may have large impact on sensitivity cases
 - Consider both effects in precursor assessments
- Impact on accidental release scenarios
 - German classification insensitive to events from OPEX with degradation of containment function/containment bypass
 - German classification should be extended in that direction
 - > Note small LRF/LERF values of below 10⁻⁶ per year

- Precursor classification
 - German classification (CCDP > 10⁻⁶) developed in 1990s
 - Based on then results for internal events at full power PSA
 - Newer models arrive at CDF ~ 10^{-6} and LRF < 10^{-6}
 - Re-examine (German) precursor classification

Emerging Methodological Issues Probabilistic Methods

- Assessment of passive barriers and elements
 - Often assume to be effective in PSA models
 - OPEX shows examples with degradations and failures
 - Comprehensive assessment methods difficult to develop
 - Perform scoping analyses and sensitivity studies
- Propagation of electrical disturbances
 - Electrical transient propagation (incl. to I&C) hard to model
 - Research on electrical transient behaviour and PSA modelling needed
- OPEX confirms known limitations of current HRA methods

Potential Loss of UHS and FW due to CCF in medium voltage transformers in the electric power supply


Event description

- 6/0.4 kV transformer no. 3 tripped in one train of EPS of auxiliary power supply
- 400 V busbar and start-up of one EDG unavailable (stop valve in service water system remains closed)
- Protection signal triggered due to low transformer oil level
- Oil level low due to
 - Low ambient temperatures (4 °C)
 - I ow transformer load •
 - Level indicator with non-linear gauge (faulty maintenance) ٠
 - Insufficient maintenance processes and practices ٠
- No. 5 & 8 transformers found with low oil level afterwards

Towards Convergence of

Overview over auxiliary power system with affected transformers

Tawards Convergence of Technical Nuclear Safety Practices in Europe

Transformer failures Precursor Issues

- Precursor analysis assumptions and results
 - 3 out of 6 CCF event postulated with conditional failure probability for no. 5 of 0.5 and no. 8 of $0.4 \Rightarrow 0.2$ for the potential CCF
 - Battery supply of DC busbars for 2 h
 - Consider operator restoration of power supply by manual switchover with failure probability of 6.3.10⁻²
 - Failure to control the event triggers Loss of UHS and FW due to operational control systems and RPS actions
 - Precursor assessment of sensitivity case ~ 2.10⁻⁶
- Issues
 - PSA model should be extended with transformer failure scenarios
 - CCF group for transformers should be included in PSA
 - Potential multi-unit effects

Tawards Convergence of Technical Nuclear Safety Practices in Europe

Missing Mineral Wool in Fire Barrier Penetration Seals

• Event description

- Interstices between fire barrier walls in emergency feedwater building not filled with mineral wool
- Spread of hot gases, smoke can lead to failures in electronic equipment and I&C of up to 2 additional redundant trains
- Precursor assessment issues
 - Assume ignition frequencies from Fire PSA
 - Conservative assessment (sensitivity case) using plant Fire PSA resulted in precursor classification
 - Fire PSA did not consider this potential degradation
 - At least sensitivity cases should be conducted regarding impacts of passive barrier failures within hazards PSA

Phase failures in the electrical power supply

• Event description

- Prominent event(s) outside of Germany (e.g. US) where electrical phase failures did not trip automatic countermeasures
- Persistent non-isolated faults may affect grid connection, power supply, and damage/make unavailable components
- GRS recommended plant improvements
- Precursor assessment issues
 - No precursor assessment possible using German PSA models due to lack of specific modelling
 - In principle feasible, by extending power supply modelling, but needing significant resources
 - Effective PSA methods and deterministic simulations identified as an area for future research by GRS

F

Towards Convergence of Technical Nuclear Safety Practices in Europe

Conclusions

- Emerging issues related to PSA & precursor studies have been identified
- Main lessons
 - Precursor assessment and CCF evaluation activities need to regularly exchange information; PSA models need to be updated
 - Precursor classification should consider containment degradations, classification schemes should be re-examined
 - Use explicitly time-dependent calculations for scenarios persisting over a long time period, considering changes in plant configuration and overlapping events
 - Consider potential failures of passive barriers and safety features at least by scoping analysis and sensitivity studies
- Specific lessons illustrated with examples from German practice

Thank you for your attention!

Tawards Convergence of Technical Nuclear Safety Practices in Europe