French Post-Fukushima Complementary Assessments

General Approach and Resulting Safety Improvements for the High Flux Reactor located in Grenoble

EUROSAFE

CONTENT

- INTRODUCTION
- THE ORGANISATION OF NUCLEAR SAFETY IN FRANCE
- THE IMPLEMENTATION OF CSAs AND THE
 ASSESSMENT OF IRSN
- THE HARDENED SAFETY CORE CONCEPT
- A CONCRETE EXAMPLE OF HSC IMPLEMENTATION -THE RHF REACTOR
- CONCLUSION

INTRODUCTION

- <u>11 March 2011</u>: Accident on the Fukushima-Daiichi nuclear power plant
- <u>5 May 2011</u>: Nuclear Safety Authority (ASN) decisions asking licensees of nuclear facilities to carry out a Complementary Safety Assessment (CSA)
- In France: all nuclear facilities have been concerned by CSAs (NPPs, fuel cycle plants, research reactors...) with a priority classification (3 categories)

THE ORGANISATION OF NUCLEAR SAFETY IN FRANCE

In the context of CSAs, the IRSN reviewed the analyses carried out by licensees

THE IMPLEMENTATION OF CSAs

- <u>Main objective</u>: to assess the response of nuclear facilities in the event of extreme natural hazards or extreme situations by analysing the risk of cliff-edge effect
- <u>Cliff-edge effect</u>: the risk that a small variation of a characteristic related to a hazard or to a degraded situation lead to a brutal change of the facility behavior with consequences exceeding the planned emergency measures
- <u>Extreme hazards</u>: earthquake, flooding and climatic phenomena with intensity higher than those considered until then in safety demonstration
- <u>Extreme situations</u>: total loss of electrical power and total loss of cooling

THE IMPLEMENTATION OF CSAs

- Licensees presented <u>analyses of robustness</u> of their facility based on an evaluation of safety margins of civil engineering structures and equipment
- <u>Safety margins</u> have mostly been evaluated by expert/engineer judgment from:
 - The design specifications and design studies of structures/equipement
 - The construction provisions actually in place in the facility (""walk-down")

Towards Convergence of Technical Nuclear Safety Practices in Europe

 The analyses carried out by licensees for CSAs led to the identification of some <u>weakness points</u> (if existing) and <u>needed reinforcements</u> of facilities

THE ASSESSMENT OF THE IRSN

- The IRSN lauded the <u>important work</u> carried out by licensees in a very short time
- The CSAs permitted to identify <u>SSCs</u> whose failure in the event of an extreme situation or extreme hazard may lead to a <u>cliff-edge effect</u> with severe radiological consequences (exceeding those considered in emergency measures)
- These SSCs are directly involved in the control of <u>basic safety</u> <u>functions</u> and can be classified according to the defence-indepth principle:
 - Prevention of severe accidents
 - Mitigation of these accidents
 - Emergency management

THE ASSESSMENT OF THE IRSN

• The IRSN has estimated in 2011-2012 that because of:

- The <u>uncertainties</u> related to the levels/intensities of extreme hazards to be considered
- The <u>simplified approaches</u> used by licensees for the evaluation of the facilities safety margins

It was not possible to conclude, with a sufficient degree of <u>confidence</u>, on the robustness of facilities under extreme conditions

 The IRSN concluded that a set of SSCs, allowing facilities to withstand extreme hazards, must be defined for facilities having a risk of cliff-edge effect:

- This leads to define a new concept: the "Hardened Safety Core"

THE HARDENED SAFETY CORE CONCEPT

- The hardened safety core (HSC) must ensure ultimate protection of nuclear facilities according to the following objectives:
 - Prevent a severe accident or limit its progression
 - <u>Limit</u> large-scale consequences in the event of an accident which was not possible to control
 - Enable the licensee to perform its <u>emergency management</u> duties
- The HSC may be composed of <u>existing SSCs</u> (that might require to be strengthened) and <u>new SSCs</u> (that shall be designed and sized to withstand extreme hazards)

THE HARDENED SAFETY CORE CONCEPT

- The effective implementation of the HSC on the facilities implies:
 - The <u>characterisation</u> of extreme natural hazards (intensity, duration, magnitude, frequencies, etc.)
 - The use of <u>robust methods</u> to design new SSCs or to verify existing SSCs belonging to HSC
- This information shall be determined with the aim that the HSC will be able to ensure, with a <u>high degree of confidence</u>, its functions in case of extreme events

- The <u>High Flux Reactor</u> (RHF), research reactor operated by the Laue-Langevin Institute (ILL), has been considered by the ASN as a top-priority facility for CSAs
- The RHF is located nearby the city of Grenoble, France, in a geographical area concerned by <u>earthquakes</u> (paleosedimentary valley) and <u>flooding</u> (several dams on rivers flowing in the mountains surrounding the RHF)
- The RHF is a 58 MW maximum thermal power reactor (the reactor core is made of one annular HEU-AI fuel assembly cooled by heavy water)

EUROSAFE

- ILL defined the HSC of the RHF based on:
 - The safety functions that must be ensured in case of extreme events (<u>reactivity control</u>, <u>fuel cooling control</u>, <u>radioactive</u> <u>materials containment</u>)
 - The application of the <u>defence-in-depth (DID)</u> principle by "dispatching" SSCs of HSC on different levels of DID
- ILL determined SSCs to be included in the HSC of the RHF:
 - <u>"Passive" SSCs</u> (static equipment or civil engineering structures)
 - "<u>Active</u>" <u>SSCs</u> (non-static systems or systems requiring electrical power supply)

- All <u>new SSCs</u> of HSC have been designed and sized to withstand:
 - Extreme earthquake (see slides after)
 - Extreme flooding (see slides after)
 - Extreme climatic phenomena (winds, rainfalls, tornadoes, etc.)
 - Secondary effects as explosions of fires (from internal or external origin)
- <u>Existing SSCs</u> have been justified (or are under justification) by ILL to these extreme hazards.

- General requirements to determine the <u>extreme earthquake</u> for the HSC design have been fixed by ASN (regulatory decision)
- Licensees must define a HSC reference seismic spectrum meeting the <u>following requirements</u>:
 - Be 50% higher than the seismic spectrum chosen as a reference for the design of new nuclear facilities
 - Be conservative of spectra defined accordingly to a probabilistic manner with a return period of 20 000 years (PSHA)
 - Take into account the possible effects due to the facility location including the nature of the soil

Spectra defined by ILL for the hard core of RHF(in pink: spectrum associated with a period of return target of 20,000 years taking into account specific site effects - in black: spectrum of simplified type "Eurocode 8" - in green dashed: the envelope of the SMS spectra for RHF, increased by 50 %, with specific site effects taken into account – in bleu dashed: the envelope of the SMS spectra for RHF)

EUROSAFE

 <u>Extreme flooding</u> characterization: ILL assumed that all dams located on the Drac river upstream to the RHF site are breakdown

EUROSAFE

- Example of <u>new SSCs</u> of HSC implemented by ILL following the CSAs of RHF:
 - ARS: New emergency reactor shutdown system
 - CEN: Underground water supply circuit (core cooling control to prevent core melt)
 - CDS: Reactor building depressurization and filtration circuit (radioactive materials containment control to mitigate severe accidents)
 - PCS3: Emergency control building including:
 - provisions for managing SSCs of HSC
 - facility monitoring devices
 - emergency tools (communication, meteorological information...)

THE HARDENED SAFETY CORE OF THE RHF

« Active » HSC		« Passive » HSC	
•	Emergency reactor shutdown system (ARS)	• Pr re	imary core enclosure and lated supporting structures
•	Ultimate "drench" circuit (CRU) in association with the emergency water supply circuit (CES)	• Fu	el handling container
•	Underground water supply circuit (CEN)	• Na	atural convection flappers
•	Emergency fuel lowering system	• Ci lin an	ing of the fuel storage channel
•	Automatic containment isolation system (SIE)	• Ne	eutron beam tube nozzles
•	Containment depressurization seismic circuit (CDS)	• Co	oncrete reactor enclosure
•	PCS3 (means of control and monitoring required for the management of crisis)	• P(bu	CS3 (room and supporting ilding)

The <u>new</u> underground water supply circuit (CEN)

CEN Suction Strainers (being handled for setting)

CEN Suction Strainers (going down in its well)

The new containment depressurisation seismic circuit (CDS)

EUROSAFE

The new bunkered emergency control room (PCS3)

CONCLUSION

- The Complementary Safety Assessments (CSA) carried out after the Fukushima accident for all nuclear facilities accident led the IRSN to define the concept of Hardened Safety Core (HSC)
- The HSC is currently being implemented on nuclear facilities for which a risk of cliff-edge effect in terms of radiological consequences has been identified following CSAs
- The Laue-Langevin Institute (ILL), operator of the RHF in Grenoble, has fully developed and implemented the concept of HSC, in agreement with IRSN opinion
- The HSC of RHF will be fully operational in 2016

THANK YOU FOR ATTENTION

