F. Rowold, K. Hummelsheim, B. Gmal, S. Keßen, S.Geupel (GRS)

Radiological aspects and behaviour of spent fuel considering long-term interim storage

EUROSAFE

Overview

- 1. Current situation of SNF storage in Germany
- 2. Regulatory aspects
- 3. Need for extended storage
- 4. Long-term storage considerations
- 5. Current activities towards long-term storage in Germany
- 6. International activities and cooperation
- 7. Conclusions

1. Current situation of SNF storage in Germany

- SNF and HAW are stored in dual purpose casks
 - Spent UO2- and MOX-fuel from power reactors
 - Vitrified high-active waste from reprocessing
 - Spent fuel from research reactors
- Mainly CASTOR® Designs (GNS)
- Some from AREVA

Towards Convergence of Technical Nuclear Safety Practices in Europe

Ε U R S Ο Α F

Design concepts for interim storage facilities

STEAG-Concept

Ε

Source: BfS

EUROSAF

2. Regulatory Aspects

- Operation licences granted for storage period of 40 years, beginning with the first cask emplacement
- Main safety functions are provided by the cask
 - Confinement of radioactive inventory
 - Sub-criticality
 - Radiation shielding
 - Decay heat removal
- Transportability of the cask during storage period
- Storage building provides protection against radiation, weather, civilian airplane crash, sabotage attacks

- Periodic Safety Reviews (PSR) every 10 years
- Cask related requirements
 - Type B(U) certification
 - Two independent sealed barrier lids
 - Permanent leak-tightness monitoring
 - Technical acceptance criteria
 - Helium filling
 - Residual moisture
 - Max. surface dose rate
 - Max. heat load
 - ... etc.

- Fuel related requirements
 - Only intact fuel rods allowed
 - Exclusion of systematic fuel failure during storage period
 - Limited corrosion
 - Limited hoop stress (120 MPa)
 - Limited hoop strain (1 %)

Evidence provided by computational analyses

 The temporary licenses of 40 years are based on administrative reasons and not on limiting physical or technical parameters!

PWR fuel element Source: www.kernbrennstoff.de

3. Need for extended storage

- Repository Site Selection Act (StandAG) came into effect on 27 July 2013
- Milestones: 2013 Establishment of a commission Safety aspects, selection criteria, safety analysis methodology 2015 Results report 2023 Recommendations for underground exploration sites 2031 Decision about disposal site by federal law 2032* Application \rightarrow Licensing \rightarrow Legal actions 2046* Begin of construction Commissioning 2060*

* Speculative data without legal basis based on experience

EUROSAFE

- Based on the schedule of StandAG, extension of interim storage period seems inevitable
- License of central storage facility Gorleben expires 2034
- License of on-site storage facility in Lingen expires 2042
- "If the licensed storage period seems likely insufficient, further appropriate safety assessments (concerning e.g. long-term behaviour of fuel elements and cask components) have to be provided by the licensee." Cit. from the *Guidelines for dry cask storage of spent fuel and heat generating waste*, submitted by the Nuclear Waste Management Commission (ESK), revised version of 10 June 2013

4. Long-term storage considerations

- Extended storage period
 - Safety functions have to be fulfilled during envisaged timeframe with respect to ageing effects caused by:
 - Decay heat
 - Gamma and neutron radiation
 - Environmental effects (moisture, air pollution)
 - Mechanical stresses
- Transport after extended storage
- Knowledge management
- Human resources

Calculated decay heat over time

Calculations performed with OREST-08 (GRS)

Calculated total decay activity of SF over time

Calculated fuel rod pressure and hoop stress

EUROSAFE

- Decreasing decay heat and activity lead to lower temperatures, stresses and dose rates after 40 years
- Corrosion is prevented by inert cask atmosphere, residual moisture criterion and coating (outside)
- Further considerations regarding the
 - Cask:
 - Structural changes of polymer neutron shielding due to accumulated gamma dose → could influence shielding capability
 - Relaxation/Creeping of bolts for lids and trunnions
 - Time-dependent pressure force, resilience and leak-tightness of the metal gaskets → important for confinement

- Fuel and cladding:
 - High-burn up and MOX-fuels with new cladding materials
 - Fuel swelling due to high burn-up and Helium generation from alpha decays
 - Effect of drying procedure
 - Hydrogen dissolution, hydride reorientation and cladding embrittlement during cool-down → could lead to loss of ductility → important for transport

Source: Chu et al., Hydride reorientation in Zircaloy-4 cladding (2008)

- Storage facilities:
 - Long-term behaviour of concrete and installations

EUROSAFE

5. Current activities towards long-term storage in Germany

- GRS Project funded by BMU: Safety aspects on the long term storage of spent fuel and vitrified high active waste
- PSR for storage facilities is being implemented, GRS supports BMU on pilot PSR for CSF Gorleben
- Continuous documentation and evaluation of operational experience, inspections and measurements
- R & D:
 - Fuel and fuel rod behaviour (ITU Karlsruhe, AREVA, GNS)
 - Polymer neutron shielding behaviour (BAM)
 - Metal gasket long-term behaviour under ambient operating conditions (BAM,GNS)

6. International activities and cooperation

- IAEA: Coordinated Research Project (CRP) on demonstrating performance of spent fuel and related system components during very long term storage
- Electric Power Research Institute (USA): Extended Storage Collaboration Program (ESCP)
- Japan: Investigations by TEPCO on flooded dry storage casks in Fukushima started in March 2013
- USA: Visual examination and testing of a 15-year stored CASTOR V/21 in 1999

7. Conclusions

- Safety assessments are well established for up to 40 years
- Temporary licences of 40 years are not based on limiting physical or technical parameters
- More than 20 years of national and international experience in dry storage
- Extended storage periods beyond 40 years require additional safety assessments
- Main issues will be closure of knowledge gaps and management of ageing, knowledge and human resources
- Many research and investigation projects are already under way

Thank you for your attention !

