Radioactive waste management in the Russian nuclear development strategy: a view of the Kurchatov Institute

Siting of radwaste repositories: short-term perspective

Technical Nuclear Safety Practices in Europe

Underground disposal of liquid radioactive waste

Plant	Disposal depth, m	LRW amount stored, mln m ³	Start of operation, year
Siberian Chemical Plant, Seversk	270–390	43	1963
Mining & Chemical Plant, Zheleznogorsk	180–500	6	1967
Research Institute of Atomic Reactors, Dimitrovgrad	1100–1600	3	1966

LRW storage facility, Zheleznogorsk

Tawards Convergence of Technical Nuclear Safety Practices in Europe

Primary energy trends of the 21st century

World

Russia

Technical Nuclear Safety Practices in Europe

Russia's nuclear power strategy

- Nuclear power is an integral part of Russia's energy industry, both today and in the foreseeable future. Its available technological potential assures the possibility of its development on the long term.
- Large-scale nuclear energy deployment involves the closing of fuel cycle to solve the resource issue by involving U-238 and Th-232 in the energy generation cycle, with centralized SNF reprocessing, along with reliable disposal of radioactive waste.

Installed nuclear capacities in Russia

EUROSAFE

Tawards Convergence of Technical Nuclear Safety Practices in Europe

NPPs currently under construction in Russia: commissioning dates as by mid-2013

Novovoronezh NPP-II Unit 1 – 2014; unit 2 – 2015

Beloyarsk NPP (BN-800) 2014

FNPP (2× KLT-40S) 2016

Leningrad NPP-II Unit 1 – 2015; unit 2 – 2016 **Rostov NPP** Unit 3 – 2014; unit 4 – 2017 *Baltic NPP* Unit 1 – 2017; unit 2 – 2018

Water-water nuclear technology development in Russia's nuclear industry

E

UROS

A F

Ε

Small VVER

Use of proven marine nuclear reactor technology. Operating experience: over 460 reactors with total service lifetime exceeding 6500 reactor-years.

Russia's nuclear fuel cycle back-end roadmap

Nuclear fuel cycle back-end

TDS	- Trial & Demonstration Centre
RT-2	- Reprocessing plant
DS	- Dry Storage
URL	- Underground Research Laboratory
GR	- Geological Repository

- Geological Repository

Spent fuel accumulation in Russia

Tawards Convergence of Technical Nuclear Safety Practices in Europe

SNF in storage, thousand tons

Russia's nuclear reactors roadmap

- Fast lead-bismuth-cooled reactor **SVBR**

F

Ε

Α

S

Ο

R

Ε

U

Towards Convergence of Technical Nuclear Safety Practices in Europe