J. Sievers (GRS) – K. Heckmann (GRS) – H. Grebner (GRS) – G. P. Moner (GRS) – G. Lerchl

STRUCTURAL MECHANICAL AND THERMAL HYDRAULIC ASPECTS ON THE BEHAVIOUR OF CRACK LIKE LEAKS IN PIPING

OUTLINE

- Introduction
- Basics for leak rate calculation
- Investigations on leak rate calculation
- Summary and outlook

INTRODUCTION

- Safety relevance of investigations of leak behaviour in primary circuit components
- Assessment of break preclusion of a pipe (KTA 3206)
 - Leak-before-Break assessment
 - Leakrate calculation with respect of measuring range of leak detection system

Primary circuit of German PWR

steam generator

Application case

To ensure leak detection calculated leak rate has to underestimate the real leak rate with respect to the measuring range of a leak detection system

INTRODUCTION

- Objectives of research work
 - Investigations on the accuracy of leak rate calculation by
 - simplified analysis methods
 - complex analysis methods
 - Validation of analysis methods on leak rate experiments

Primary circuit of German PWR

steam generator

- Various calculation methods depending on the thermal hydraulic conditions of the fluid flowing through the leak
- A simplified method for critical discharge of cold water
 - mass flow (leak rate / leak area) due to *Bernoulli-equation*

$$G = \sqrt{\frac{2 \cdot [p_0 - p_U] \cdot \rho_0}{1 + \zeta}}$$

- p_U ambient pressure
- ho_0 fluid density at stagnation temperature
 - flow resistance

- Various calculation methods depending on the thermal hydraulic conditions of the fluid flowing through the leak
- A simplified method for critical discharge of cold water
 - mass flow (leak rate / leak area) due to *Bernoulli-equation*

$$G = \sqrt{\frac{2 \cdot \left[p_0 - p_U\right] \cdot \rho_0}{1 + \zeta}}$$

- p_U ambient pressure
- ρ_0 fluid density at stagnation temperature
 - flow resistance

- Various calculation methods depending on the thermal hydraulic conditions of the fluid flowing through the leak
- A simplified method for critical discharge of **subcooled water**
 - mass flow (leak rate / leak area) [#]
 due to modified Bernoulli-equation

$$G = \sqrt{\frac{2 \cdot [p_0 - p_s(T_0)] \cdot \rho_s(T_0)}{1 + \zeta}}$$

- $p_s(T_0)$ saturation pressure at stagnation temperature
- $\rho_s(T_0)$ saturation value of fluid density at stagnation temperature ζ – flow resistance

- Various calculation methods depending on the thermal hydraulic conditions of the fluid flowing through the leak
- A simplified method for critical discharge of **subcooled water**
 - mass flow (leak rate / leak area) [#]
 due to modified Bernoulli-equation

$$G = \sqrt{\frac{2 \cdot [p_0 - p_s(T_0)] \cdot \rho_s(T_0)}{1 + \zeta}}$$

- $p_s(T_0)$ saturation pressure at stagnation temperature
- $\rho_s(T_0)$ saturation value of fluid density at stagnation temperature ζ – flow resistance

- Various calculation methods depending on the thermal hydraulic conditions of the fluid flowing through the leak
- A simplified method for critical discharge of **subcooled water**
 - mass flow (leak rate / leak area) due to modified Bernoulli-equation

$$G = \sqrt{\frac{2 \cdot \left[p_0 - p_s(T_0)\right] \cdot \rho_s(T_0)}{1 + \zeta}}$$

 $p_s(T_0)$ – saturation pressure at stagnation temperature $\rho_s(T_0)$ – saturation value of fluid density at stagnation temperature ζ – flow resistance

Structure mechanics analysis (ADINA)

Thermal hydraulic analysis (ATHLET)

360

Structure mechanics analysis (ADINA)

Thermal hydraulic analysis (ATHLET)

Tawards Convergence of Technical Nuclear Safety Practices in Europe 16

360

Structure mechanics analysis (ADINA)

Thermal hydraulic analysis (ATHLET)

Tawards Convergence of Technical Nuclear Safety Practices in Europe 16

360

Structure mechanics analysis (ADINA)

Thermal hydraulic analysis (ATHLET)

16

Technical Nuclear Safety Practices in Europe

Technical Nuclear Safety Practices in Europe

SUMMARY AND OUTLOOK

- Evaluation of fluid flow rates through crack-like leaks in piping relevant for leak-before-break assessment
 - Leak rates should be underestimated to ensure leak detection
 - Simplified methods calculate critical mass flow
 - Need for investigations on best estimate methods
- Changing of the leak size during accident scenario should be considered by coupled thermal hydraulic and structural mechanical investigations, if significant.
- In case of severe accident scenarios due to a crack-like leak investigations should be performed on
 - the changing leak size
 - possible leak growth
 - possible break

THANK YOU FOR YOUR ATTENTION

EUROSAFE