Michael Türschmann – Siegfried Babst – Marina Röwekamp

Application of FIRE PSA in case of modifications for post-operational shutdown states

Contents

- Introduction (What is the status of Hazards PSA in Germany?)
- Concept of a comprehensive site-specific Hazards PSA
- Systematic extension of Level 1 PSA model using equipment and dependency lists according to a given hazard
- Application to Fire PSA for a German NPP in post-commercial shutdown
 - Project definition compare versions of spent fuel cooling
 - Plant model modification due to plant-internal hazard fire

Towards Convergence of echnical Nuclear Safety Practices in Europe

- Results
- Conclusions

EUROSAFE

Introduction I

- German PSA Guideline and its technical document on PSA methods require PSA for NPP safety reviews
- Since 2005, this also covers detailed probabilistic analyses for the following (internal and external) hazards:
 - Internal fire
 - Internal flooding
 - Aircraft crash
 - Explosion pressure (blast) wave
 - External flooding
 - Earthquake.
- For these hazards, specifications and methodological approaches are provided in the German PSA Guideline

Introduction II

- Risk contributions of other hazards have to be only roughly assessed, e.g.:
 - □ Toxic (gas) clouds
 - External fires
 - Ship collisions with intake structures
 - Extreme weather conditions
 (e.g. lightning, storm, snow, ice and combinations of these)
 - Biological phenomena

Concept of a comprehensive site-specific Hazards PSA

- The reactor accidents at Fukushima Dai-ichi in March 2011 gave reason and indication to check the modelling for calculating plant specific risk of hazards
- A standardized approach for performing a comprehensive site specific Hazards PSA is being developed for all kinds of internal and external hazards

Main ideas of the Hazards PSA concept I

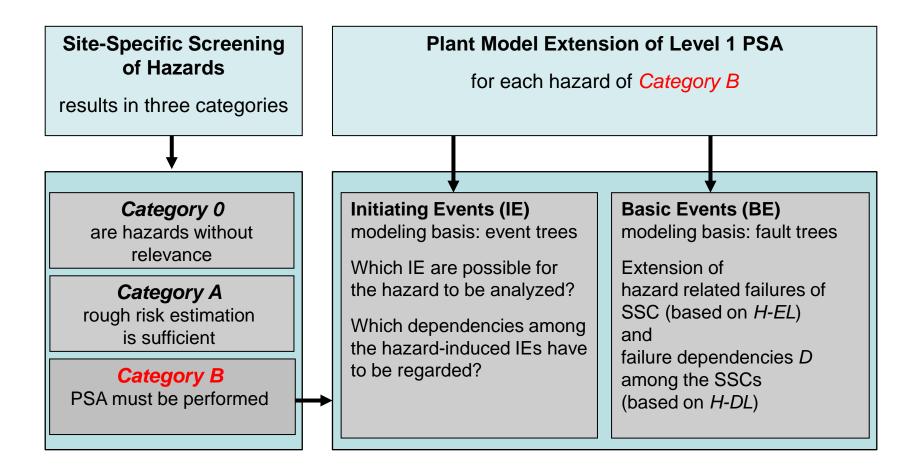
- Screening of site specific hazards: Decision, which hazards or which combinations of hazards have to be assessed and in which level of detail
- Systematic discussion of all potential dependencies to be considered in the plant risk model
 - Impact dependencies of different hazards
 - Dependencies of safety functions needed to control the consequences of hazard induced initiating events
 - Dependencies of hazard induced failures of SSC

Main ideas of the Hazards PSA concept II

- Standardized methodology for all hazards, which must be probabilistically analyzed in detail
 - Generation and compilation of Hazard Equipment Lists (*H-EL*) and Hazard Dependency Lists (*H-DL*)
 - Systematic (and partly automatic) extension of the given Level 1 plant risk model using *H-EL* and *H-DL*

First applications of the HAZARDS PSA concept

Meanwhile, essential parts of the approach have been tested in practice:


Seismic PSA:

A database has been prepared to support the equipment screening and the compilation of the Seismic Equipment List (*S-EL*) with all relevant SSC

Fire PSA:

Systematic and automatic extension of the plant risk model (fault trees) using the Fire Equipment List (*F-EL*) containing a compartment assignment for all relevant components including cables (compartment inventory)

Performing a Hazards PSA – Overview I

Tawards Convergence of Technical Nuclear Safety Practices in Europe

Performing a Hazards PSA – Overview II

Site-specific hazard selection and categorization

Selection: Identification of hazards or hazard combinations that could occur at the site. Categorization: Which hazards are relevant, i.e. lead to a measureable risk contribution, or which can be neglected?

Which Initiating Events (IE) are triggered by an identified relevant hazard?

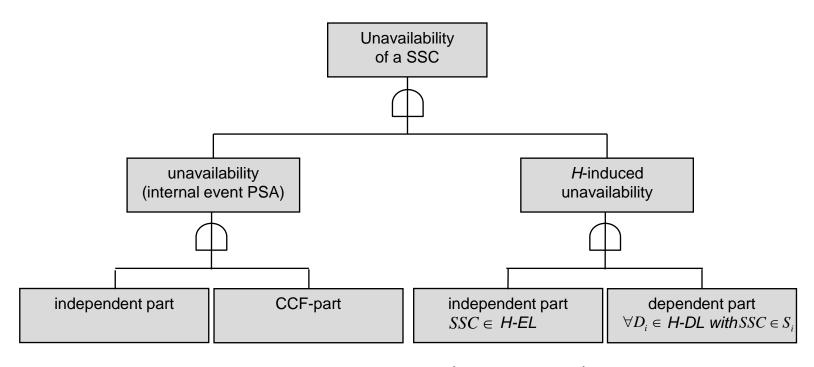
Which initiating events occur (nearly) simultaneously due to a hazard (hazard-induced IEs)? What are the conditional occurrence probabilities of the initiating events? Identification of possible IE Investigation of dependencies Consideration in plant risk model

Plant model extension (hazard-induced failures of SSC)

Compilation of *H-EL* and *H-DL* (using screening procedures and plant walkdowns)

Tawards Convergence of Technical Nuclear Safety Practices in Europe

What is a Hazard Equipment List (*H-EL*)?

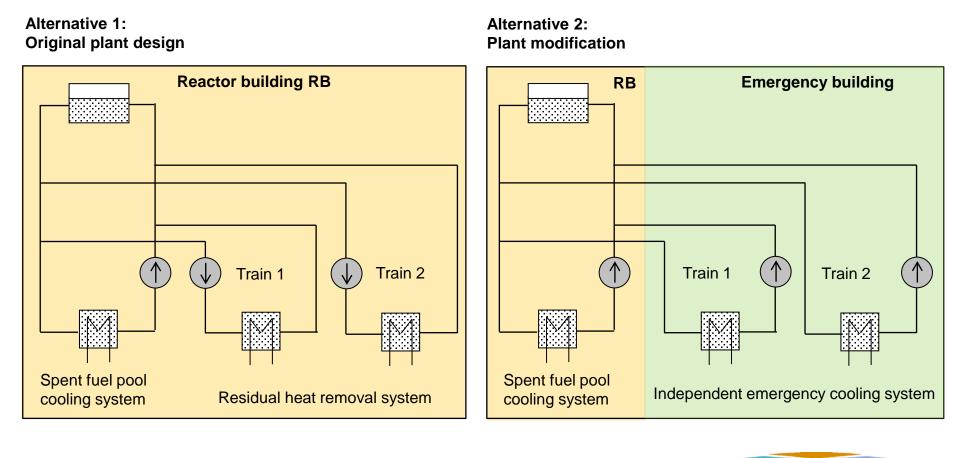

$$HEL = \left\{ SSC_1, SSC_2, \dots, SSC_n \right\}_H$$

- For a given hazard H the corresponding Hazard Equipment List H-EL contains all SSC, which are vulnerable by the impact of hazard H
- Additionally, the failure or unavailability of such a SSC should contribute to the *H*-induced risk
- The process of compiling and applying such an equipment list is well known from Seismic PSA with the Seismic Equipment List S-EL

What is a Hazard Dependency List (*H-DL*)? $HDL = \{D_1, D_2, ..., D_m\}_H \text{ mit } D_i = \{A_i, S_i, c_i\}$

- For a given hazard H the corresponding Hazard Dependency List H-DL contains all dependencies among the H-induced failure behaviour of SSC, which should be considered
- Generally, a dependency *D* can be described with a triple
 - S is the set of dependent SSC
 - A is the common property of the elements of S (reason for hazard-induced dependency)
 - *c* is the strength of dependency (correlation factor)

Fault tree extension using H-EL and H-DL


 $H-EL = \{SSC_1, SSC_2, ..., SSC_n\}$ $D-EL = \{D_1, D_2, ..., D_m\} with D_i = (A_i, S_i, c_i) i = 1, ..., m$

EUROSAFE

Application to Fire PSA for a NPP in post-commercial shutdown operation

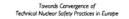
 A licensee plans a plant modification regarding the cooling of the spent fuel pool for the post operation.

Towards Convergence of Technical Nuclear Safety Practices in Europe

Alternatives of spent fuel pool cooling

- Original plant design (alternative 1)
 Cooling of the spent fuel pool by SFPC system in normal operation
 - If SFPC system fails or is in outage, RHR system takes over with two redundant trains
- Intended plant modification (alternative 2)
 Spent fuel pool cooling function of the RHR system shall be replaced by the two redundant trains of the IEC system
 - IEC system has two independent ultimate heat sinks
 - IEC-system is located within the emergency building and therefore protected against external hazards

Fire PSA for the SFP cooling alternatives

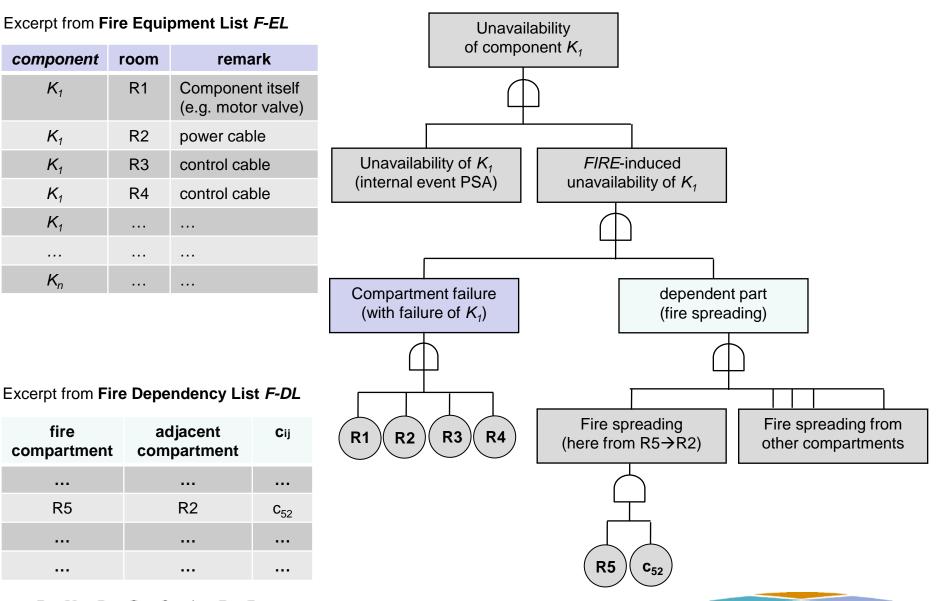

- PSA carried out by NPP licensee to compare the FDF for both alternatives
- Consideration of the following initiating events:
 - Loss of offsite power
 - Spent fuel pool RHR failure
 - Loss of water from spent fuel pool
 - □ Flooding of IES building (only for alternative 2)
- Task:

Comparative Fire PSA based on the above PSA plant model and data derived from plant specific FP Fire PSA

Performing a FIRE PSA

- Depth of investigation: Partitioning of the relevant buildings into compartments
- Compartment failure: Functional unavailability of the total inventory of the compartment (components, cables).
- Compartment failure frequency: Fire induced failure frequency to be estimated for each compartment; this is the product of
 - Compartment specific fire occurrence frequency and
 - Conditional fire extinguishing failure probability
- Component failure: Component or its cables belong to the fire induced failed compartment

EUROSAFE


Fire Equipment List

- Fire Equipment List *F-EL*
 - F-EL contains a component/cable-compartment assignment
 - Fire induced compartment failure frequency estimated for each compartment
 - Basis of compilation:
 - Inventory database including cables
 - Fire PSA database for power operation

Fire Dependency List

- Fire dependency list *F-DL*
 - *F-DL* contains the compartments directly adjacent to each room ('neighbouring compartments')
 - Conditional fire propagation probability is given for each couple of compartments
 - Basis of compilation:
 - Fire PSA for power operation including information on fire barriers between compartments

Fault tree extension by fire induced failures

EUROSAFE

Tawards Convergence of Technical Nuclear Safety Practices in Europe

Results

- Fire PSA could effectively be performed for two alternatives of spent fuel pool cooling based on FP Fire PSA and a comparative PSA for post-commercial shutdown states
- Fire PSA result: risk of the new alternative of spent fuel pool cooling is lower than that of original design
- Restrictions:
 - Results are applicable for comparison only
 - For post-commercial shutdown Fire PSA, need for additional analyses
 - Development of fault trees for fire induced IE
 - Fire specific investigations to consider particular conditions of post-commercial shutdown states

Conclusions

- A conceptual approach for a comprehensive site specific Hazards PSA has been developed
- The concept is being validated and implemented step by step
- Part of this concept is the systematic extension of Level 1 PSA quantification models (fault trees) supported by Hazard Equipment Lists *H-EL* and Hazard Dependency Lists *H-DL*
- Fire PSA could effectively be carried out for two alternatives of spent fuel pool cooling within the conceptual approach for a comprehensive site specific Hazards PSA