Chun-Liang Zhang

GRS Repository Safety Research Division, Germany

Self-Sealing of Fractures in Clay Rock for Disposal of Radioactive Waste

EUROSAFE

Excavation Damaged Zone Sealing of EDZ expected 3

- Rock rheological compression & backfill withstand
- Swelling of claystone in EDZ by water uptake

Experimental Evidence for Sealing of Fractures

- 1. Rock mechanical compression
- 2. Water-enhanced sealing of fractures
- 3. Thermal impact on sealing of fractures
- 4. Simulation of EDZ evolution around boreholes

EUROSAFE

Clay Rocks investigated at GRS Laboratory

Basic characters

clay content	~42 %
water content	7.7 %
porosity	13~17 %
permeability	< 10 ⁻²⁰ m ²
uniaxial strength	20~30 MPa

clay content	~65 %
water content	6.7 %
porosity	14~17 %
permeability	< 10 ⁻²⁰ m ²
uniaxial strength	10~15 MPa

Towards Convergence of Technical Nuclear Safety Practices in Europe

D28cm, L70cm

1. Sealing of fractures under mechanical compression

COX sample

OPA sample

fracture closure gas permeability

Fracture closure under normal stress

Fracture closure and permeability decrease

EUROSAFE

Sealing of shear fractures by compression

Sealing of fractures in large-scale samples

2. Water-enhanced sealing of fractures

synthetic porewater flow

 \bigcirc

triaxial cell fracture closure water permeability

permeameters long-term water permeability

fractured samples

Fracture closure and water permeability

before test

E U R O S A F E

Water permeability related to clay swelling

Towards Convergence of Technical Nuclear Safety Practices in Europe

Ε U R Ο S Α F

Long-term water permeability of fractured claystone

EUROSAFE

3. Thermal impact on sealing of fractures

heating in a triaxial cell fracture closure water permeability

heating in an oven long-term water permeability COX sample

Thermal impact on fracture closure and permeability

Coupled effects: Mechanical compression Water-enhanced swelling/sealing viscosity change Thermal-induced fracture opening/closing

Long-term permeability during heating/cooling cycle

E U R O S A F E

4. Simulation of EDZ-evolution around boreholes

D/L/d=280/500/100mm

before testing

after damage

Towards Convergence of Technical Nuclear Safety Practices in Europe

E U R O S A F E

Sealing of EDZ around a borehole

gas flow by re-compaction

water flow at thermal load

Conclusions

- Strong experimental evidence for the high sealing capability of the studied clay rocks
- Fracture closure and permeability decrease significantly with confining stress
- Water flow enhances the sealing of fractures dramatically
- Thermal impact on the sealing of fractures insignificant
- Fractures in clay rocks can be fully re-sealed to the intact state under the repository conditions
- Models needed for prediction and assessment of the realistic sealing process of the EDZ in repositories

Acknowledgements

The author gratefully acknowledges the funding of the work by

- the German Federal Ministry of Economics and Technology (BMWi)
- the Commission of the European Communities (CEC)
- > The support from **ANDRA** by providing the samples

Thank you for your attention !