Ulrich Noseck, Judith Flügge, Thorsten Schäfer

# Impact of bentonite colloids on radionuclide transport in fractured systems – results from field experiments and modelling

EUROSAFE

#### **Role of colloids in the Safety Case**

- Colloids might enhance transport of radionuclides (RN), particularly for
  - advective groundwater transport
  - high pH-values, low salinity
  - large geochemical gradients
  - presence of organics (humic-/fulvic acids)
  - strongly sorbing RN



#### **Role of colloids for crystalline formations**

- Problem for repositories in crystalline formations
  - Inflow of low mineralized glacial melt water
  - Bentonite erosion at the interface to the pore water
  - Colloid- and Radionuclide release out of the bentonite
  - Colloid facilitated RN transport through the fractures







#### **CFM (Colloid Formation and Migration)**

- International project at Grimsel Test Site (GTS) with several international partners
  - Follow-on of CRR (Colloid and Radionuclide Retardation)
  - Investigation of bentonite erosion / colloid formation at the interface between bentonite buffer and pore water
  - Mobility of colloid-bound radionuclides / homologues under reality near hydraulic conditions → Relevance for PA
  - Influence of kinetic processes
  - Integrated experiment with RN-doted "bentonite buffer": bentonite re-saturation, colloid formation and colloid-facilitated RN transport

#### **CFM Partners**

| Min-Hoon Baik                                                                | Korea Atomic Energy Research Institute (KAERI)                   |                                                                                       |  |  |  |  |
|------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|--|--|
| Kazuki lijima                                                                | Japan Atomic Energy Agency (JAEA)                                |                                                                                       |  |  |  |  |
| Kotaro Nakata                                                                | Central Research Institute of Electric Power Industry (CRIEPI)   |                                                                                       |  |  |  |  |
| U. Yamada, M. Suzuki                                                         | National Institute of Advanced Industrial Science & Technology   |                                                                                       |  |  |  |  |
| U. Alonso, T. Missana                                                        | The Centre for Energy-Related, Environ. & Technological Research |                                                                                       |  |  |  |  |
| P. Hölttä, K. Koskinen                                                       | University of Helsinki, POSIVA                                   |                                                                                       |  |  |  |  |
| Bill Lanyon                                                                  | Fracture-Systems Ltd.                                            |                                                                                       |  |  |  |  |
| T. Trick, K. Kontar                                                          | SOLEXPERTS AG, Swiss precision monitoring                        |                                                                                       |  |  |  |  |
| I. Blechschmidt, A. Martin                                                   | NAGRA                                                            |                                                                                       |  |  |  |  |
| C. Degueldre                                                                 | PSI, Laboratory for Waste Management (LES)                       |                                                                                       |  |  |  |  |
| T. Schäfer, F. Huber , C. Walther<br>W. Hauser , A. Pudewills, Horst Geckeis |                                                                  | Karlsruhe Institute of Technology (KIT)<br>Institute for Nuclear Waste Disposal (INE) |  |  |  |  |
| S. Wold, V. Cvetkovic                                                        | Royal Institute of Technology , representative for SKB           |                                                                                       |  |  |  |  |
| Paul Reimus                                                                  | Los Alamos National Laboratory (LANL)                            |                                                                                       |  |  |  |  |
| U. Noseck, J. Flügge                                                         | Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH        |                                                                                       |  |  |  |  |



#### **Grimsel Shear Zone**



NAGRA 2004

Zone with many discontinuities

Ductile open and filled features

#### **Cross section through shear zone / boreholes**



E U R O S A F E

### **CFM field migration experiments**

- Field experiments with ideal tracer, colloids, homologues Eu, Tb (III), Hf, Th (IV)
- Typical procedure
  - Injection of a cocktail with bentonite colloids and homologues
  - Homologues equilibrated with formation water and bentonite colloids
  - Homologues (III, IV) quantitatively bound to colloids
  - Constant in- / outflowrate in each experiment
  - Online- / offlinemeasurement of breakthrough curves (BTCs) at extraction site



#### Model



- Components and its interactions
  - mobile und immobile colloids
  - sorption und filtration of colloids
  - contaminants
    - dissolved
    - bound to sediment
    - bound to colloids
  - linear / non-linear sorption, kinetically controlled
  - radioactive decay



EUROSAFE

#### **CFM Field migration experiments: Ideal tracers**



E U R O S A F E

#### **Simulation of ideal tracer BTCs**

| Parameter                         | Value                 |
|-----------------------------------|-----------------------|
| Dimensionality                    | 2D                    |
| Thickness [m]                     | 5·10 <sup>-3</sup>    |
| Dipole distance [m]               | 6.2                   |
| Porosity [-]                      | 0.115                 |
| Dispersion length [m]             |                       |
| - longitudinal<br>- transversal   | 0.3<br>0.1            |
| Diffusion coefficient             | 2.0·10 <sup>-11</sup> |
| [m <sup>2</sup> s <sup>-1</sup> ] |                       |
| Permeability [m <sup>2</sup> ]    | 5.5·10 <sup>-11</sup> |
| Rock density [kg m <sup>3</sup> ] | 2670                  |
| Temperature [K]                   | 293.15                |



#### **CFM RUN 10-01: Colloids**

- Modelling approach
  - Irreversible interaction: filtration rate: 0.01 h<sup>-1</sup>
  - − Reversible interaction: attachment / detachment rate 0.054 h<sup>-1</sup> / 0.108 h<sup>-1</sup>  $\rightarrow$  R<sub>f</sub> =1.5



#### **CFM RUN 10-01: Homologues**

- Desorption rates of homologues from colloids
  - tetravalent (Hf, Th):  $k_{3.4} = 0.03 h^{-1}$
  - trivalent (Eu, Tb): k<sub>3,4</sub> = 0.075 h<sup>-1</sup>



#### **CFM RUN 10-01: Kinetic parameters and recoveries**

|           | Desorption                          | Ad-/<br>Desorption                                  | Filtration | Recovery [%] |            |  |  |
|-----------|-------------------------------------|-----------------------------------------------------|------------|--------------|------------|--|--|
|           | k <sub>3,4</sub> [h <sup>-1</sup> ] | K <sub>2</sub> (k <sub>2</sub> ) [h <sup>-1</sup> ] | [h⁻¹]      | Experiment   | Simulation |  |  |
|           |                                     | 0.054                                               |            | 64           | 67         |  |  |
| Colloid   |                                     | (0.108)                                             | 0.01       | 53           |            |  |  |
|           |                                     | $\rightarrow$ R <sub>f</sub> = 1.5                  |            | 47           |            |  |  |
| Homologue | 0.03                                |                                                     |            | Th: 32       | 27         |  |  |
| (IV)      | Batch 0.002                         |                                                     |            | Hf: 30       |            |  |  |
| Homologue | 0.075                               |                                                     |            | Tb: 7        | 10.0       |  |  |
| (111)     | Batch 0.004                         |                                                     |            | Eu: 14       |            |  |  |

#### **CFM RUN 10-03: Colloids and homologues**

- No usable ideal tracer available
- Application of the same parameters as in 10-01
- Colloid/matrix interaction rates not changed
- Desorption rates of homologues from colloids reduced
  - Tetravalent: 0.0025 h<sup>-1</sup>
  - Trivalent: 0.02 h<sup>-1</sup>



Towards Convergence of Technical Nuclear Safety Practices in Europe

EUROSAFE

#### **CFM RUN 12-02: Field experiment with radionucides**

#### First CFM hot tracer experiment

- Similar inflow conditions
- Outflow: 25 ml/min
- Radionuclide cocktail

| RN     | A [Bq]                    | M <sub>0</sub> [μg] |
|--------|---------------------------|---------------------|
| Na-22  | <b>2</b> ⋅10 <sup>6</sup> | 0.0087              |
| Ba-133 | 2.52·10 <sup>6</sup>      | 0.266               |
| Cs-137 | 9 <b>∙</b> 10⁵            | 0.281               |
| Np-237 | 1.3·10 <sup>2</sup>       | 4.99                |
| Am-243 | 3.6·10 <sup>2</sup>       | 0.0487              |
| Pu-242 | 2·10 <sup>2</sup>         | 1.37                |
| Th-232 | 8.5·10 <sup>-3</sup>      | 2.09                |



 Only ideal tracer data available so far

#### **Predictive calculations for CFM RUN 12-02: Ideal tracer**



E U R O S A F E

#### Predictive calculations for CFM RUN 12-02: Colloids and homologues



EUROSAFE

#### **Recoveries**

|         | Run 08-01 / 02 |       | Run 10-01 |     | Run 10-03 |       | Run 12-02 |       |       |     |                   |    |
|---------|----------------|-------|-----------|-----|-----------|-------|-----------|-------|-------|-----|-------------------|----|
|         | Exp.           | DS1*1 | Exp.      | DS1 | Exp.      | DS1   | DS2*2     | Exp.  | DS1   | DS2 | DS3* <sup>3</sup> |    |
| tracer  | 99             |       | 84        |     |           | 90    |           | 80    |       |     |                   |    |
|         | colloid 99 84  | 64    |           |     |           |       |           | 54    |       |     |                   |    |
| colloid |                | 84    | 53        | 67  | 41        | 41 45 |           |       |       |     |                   |    |
|         |                |       | 47        |     |           |       |           |       |       |     |                   |    |
| Th      | 93             | 70    | 32        | 32  | 20        | 43    | 2         | 20    | Pu Th | 11  | 46                | 24 |
| Hf      | 78             |       | 30        | 28  | 46        | Ζ     | 28        | ru, m |       | 40  | 24                |    |
| Tb      | 56             | 54    | 7         | 10  | 6<br>14   | 0.1   | 5         | Am    | 2     | 18  | 5                 |    |
| Eu      | n.a.           |       | 14        | 10  |           |       |           |       |       |     |                   |    |

<sup>\*1</sup> Data Set 1:  $k_{3,4} = 0.075 h^{-1}$  for homologues(III) und 0.03  $h^{-1}$  for homologues(IV) <sup>\*2</sup> Data Set 2:  $k_{3,4} = 0.02 h^{-1}$  for homologues(III) und 0.0025  $h^{-1}$  for homologues(IV) <sup>\*3</sup> Data Set 3:  $k_{3,4} = 0.051 h^{-1}$  for homologues(III) und 0.014  $h^{-1}$  for homologues(IV)

#### 0.05 **Results from batch experiments** 0.045 0.04 0.035 0.03 Batch sorption experiments 0.025 $\mathsf{K}_{\mathsf{d,tot}}$ with ternary systems (Huber 0.02 et al. 2011) 0.015 0.01 • $K_{d.tot} = K_{d1} / C_{col} \cdot K_{d3}$ 0.005 0 1000 2000 0 0.02 K<sub>d,tot</sub> K<sub>d1</sub> **k**<sub>1</sub> [h<sup>-1</sup>] K<sub>d3</sub> $K_{3.4}$ 0.018 [m³/kg] [m<sup>3</sup>/kg] [m<sup>3</sup>/kg] [h<sup>-1</sup>] 0.016 0.0035 Am 0.02 2 1.0 1600 0.014 $\mathsf{K}_{\mathsf{d,tot}}$ Pu 0.048 0.85 1.0 1600 0.0022 0.012 0 0.01 0.008 Field experiments, $k_{34}$ 0.006 0.004 – Hom.(III): 0.02 – 0.075 h<sup>-1</sup> 0.002 – Hom.(IV): 0.0025 – 0.03 h<sup>-1</sup> 0 0 1000 2000

E U R O S A F E

Time [h] Huber et al. 2011

6000

7000

8000

5000

Pu

3000

4000

4000

3000

5000

Am

6000

7000

8000

### Conclusions

- Field experiments under near-natural conditions successful
  - Maintaining stable flow conditions over long time frames possible
  - Increased transport times in CFM allow investigation of kinetics
- Simulation calculations
  - Flow calculations for all dipole experiments with one data set
    - Breakthrough curve of ideal tracer well described
  - Filtration of colloids could be described with one rate (indication for additional reversible retardation)
  - Desorption kinetics for homologues / radionuclides from colloids most relevant
    - Desorption rates decrease with increasing transport time
    - Desorption rates in migration experiments higher as in batch experiments; but converge with increasing transport time

## Outlook

- Evaluation of the hot tracer test
  - Time dependence of the desorption rate
  - Homologues vs. radionuclides
- Integration of results from different modelling groups
- Further field experiments at other dipoles
  - Shorter and longer transport lengths
  - Check transferability of results
- Integrated experiment
  - Demonstration
  - Integration of bentonite erosion and colloid-facilitated transport



 Acknowledgement: This work was financed by the German Federal Ministry of Economics and Technology (BMWi) under contract no. 02 E 10669 and 02 E 10679 in the framework of the KOLLORADO-2 project. We also would like to thank the partners from the CFM project at Grimsel Test Site - KIT-INE (Germany), JAEA (Japan), SKB (Sweden), CRIEPI (Japan), KAERI (Republic of Korea), POSIVA (Finland), NAGRA (Switzerland), USDOE (USA).

## Thank you for your attention!