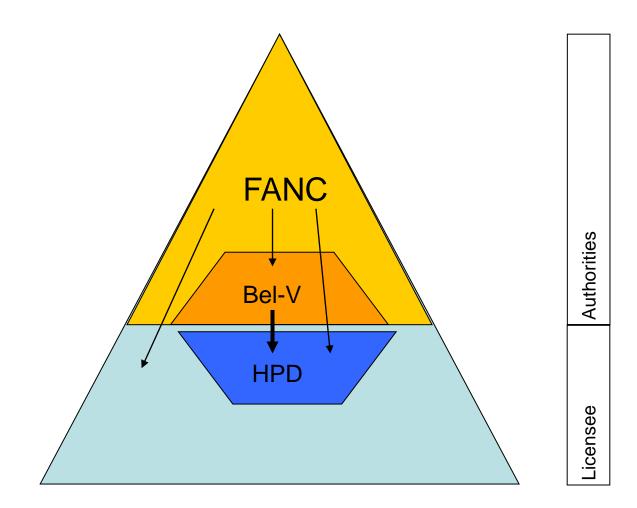
E. Minne, C. Peters, C. Mommaert, C. Kennes, G. Degreef, G. Cortenbosch, F. Schmitz, M. Van haesendonck, H. Drymael (Bel V) P. Carlier (Federal Agency for Nuclear Control)

Recent evolution in the regulatory framework of the Belgian class II nuclear installations such as irradiators and accelerators


EUROSAFE

Content

- The Belgian regulatory framework in a few words
- Brief description of the 2006 Sterigenics irradiation accident

- Safety assessment of the class II installations
- Refining the class II installation definition
- Improving the safety requirements in the class IIA installations
- First findings since 2009
- Lessons learned Challenges

Belgian regulatory framework since 2008

E U R O S A F E

Integrated strategy for Inspection and Surveillance (ICI)

The ICI objective is to explicit the Regulatory Body missions :

- The Federal Agency for Nuclear Control inspections :
 - guarantee the general surveillance of the Belgian nuclear sector ;
 - enable the assessment of the nuclear safety or Radiation Protection level for a given activity, and initiate some improvement actions if required ; ...
- The Bel V surveillance :
 - guarantees that the Health Physics Department activities of each class IIA Licensee are in accordance with the regulation ;
 - reviews and analyses the licensee technical notes such as modification projects, procedures related to safety, INES rating, ...

2006 Sterigenics irradiation accident

- Evolution of the regulatory framework was in the air but this was the trigger to the improvement of the safety requirements of some installations.
- The lawsuit conclusions as well as the accident consequences are clearly out of scope.
- Sterigenics is a class II industrial irradiation facility composed of two vaults :
 - Gammir I : 96 PBq ⁶⁰Co (2,6 MCi) ;
 - Gammir II : 37 PBq ⁶⁰Co (1 MCi).
- Medical devices and foodstuffs sterilization.

2006 Sterigenics irradiation accident (2)

- In March 2006, a senior operator was called back on site following recurring high level radiation alarms on Gammir II.
- These alarms were considered as false by the operator.
- Believing the sources were in a safe position in the pool, he entered the vault in order to actuate the inner switch and to close the door.
- Blood analyses revealed an effective dose of 4,4 to 4,8 Gy.
- Fortunately, the operator was successfully treated in France.

2006 Sterigenics irradiation accident (3)

- The possible cause of the accident is an instability in the hydraulic system leading to unwanted rising of the sources.
- The root cause of this instability seems to be a modification of the hydraulic system :
 - not properly evaluated by the Licensee ;
 - not mentioned to the external Health Physics Dpt.
- After this accident, thorough reassessment of the facility, important safety improvement and operator's training effort.
- Trigger of the safety assessment of class II installations.

Authorized nuclear installations (RD 20/07/2001)

- Class I (NPP, ...), Class III, IV (out of scope)
- Class II :
 - facilities producing or conditioning radionuclides from irradiated fissile substances;
 - particle accelerators ;
 - facilities containing high activity sources (irradiators, ...);
 - nuclear medicine ;
 - X-rays generators with nominal peak voltage > 200 kV ;

Authorized class II facilities (RD 20/07/2001)

2006 – 2007 Safety assessment in class II facilities

- The Federal Agency for the Nuclear Control and the Licensed Bodies carried out a safety assessment of the class II facilities.
- Three priority levels depending on the risk of high dose rate exposure :
 - Priority I : Cyclotrons producing medical radionuclides, industrial irradiators, ...
 - Priority II : radiotherapy, X-rays generators (V > 200 kV), ...
 - Priority III : medical radionuclides storage, small irradiators, ...
- Priority II and III are out ot scope of this presentation. Particular attention has been paid to industrial radiography.

New subclass IIA facilities

- Priority I results showed a few breaches generally rapidly solved.
- This led to create a IIA subclass covering the heavy class II:

Class IIA licensees :	13
containing :	
Industrial irradiators (>100 TBq)	3
Research irradiators	6
Van de Graaff accelerators	3
Cyclotrons	13
Cyclotrons awaiting dismantling	3
Radionuclides conditioning	1
Cyclotron constructor	1

EUROSAFE

New class IIA safety requirements

The class IIA Licensee has to :

- when possible, organize an internal Health Physics Dpt;
- write up a safety analysis report ;
- formalize in procedures approved by HPD and Bel V :
 - the facility modifications management ;
 - the events declaration process to the authorities.

First findings about class IIA since 2009

- The facility design disparity due to :
 - the Licensee's activities (research, radionuclides production, ...)
 - the design periode ;
 - the Licensee's choices ; ...
- The safety culture and means :
 - an interrogative attitude is required from the Licensee, the workers and the Health Physics Department to reassess the decisions previously made;
 - the licensees resources are not comparable with those of the class I installations (internal HPD is a luxury, additional workload, ...).
- Real willingness to meet the new safety and RP requirements.

Significant events since 2009

- None of these events led to dose exceeding legal limit for the workers or the public
- In industrial / research irradiators :
 - procedure for entering irradiation vault not respected;
 - by-pass of the vault door interlock ;
- In radionuclides producers :
 - opening of a synthesis shielded cell containing high ¹⁸F activity
 - non-authorized physical by-pass of the door shielded cell interlock ;
 - Unintentional deactivation of a door interlock on a new shielded cell ;
 - Unintentional releases of radioactive gaseous effluents.

Significant events since 2009 (2)

• In a ⁶⁰Co research irradiator : By-pass of vault door interlock :

- the operator bypassed the interlock of the vault door in order to simplify the entrance procedure (dose rate calibration);
- after an irradiation, the operator and a subcontractor entered the chicane vault;
- they were warned by their electronic personal dosimeter (30 μ Sv/h);
- No dose was recorded on the legal dosimeters.
- Cause : incomplete return of the sources in safe position due to partial blocking of a source driving cable.
- Actions : the driving mechanism was improved ;
 - the alarm logics was reviewed ;
 - increasing the operator's awareness.

Significant events since 2009 (3)

- In a radionuclides producer : opening of a synthesis shielded cell containing high ¹⁸F activity :
 - during the synthesis of 74 GBq ¹⁸F-compound (2 Ci), incomplete transfer of the activity in the synthesis module;
 - to ensure the next production, the operator opened the cell door in order to replace the single use tubing system;
 - he directly closed the door after actuation of his electronic personal dosimeter alarm ;
 - the production manager arrived at this moment and decided to stop.
- Causes : absence of interlock on the cell door ;
 - rush to ensure a second production.
- Tubing kit defect notified. Procedure improved. Operator's awareness.

Recurring causes identified

From these events, we underline :

- inappropriate behaviour or mistakes ;
- pressure on the operators to gain time or to ensure on-time radiopharmaceutical delivery;
- inadequate design of older installations with regards to the new RP or nuclear safety standards (absence of door interlock, poor gastightness, ...);
- insufficient knowledge on the safe use of new equipment.

Lessons learned - Challenges

From these observations, the RB promotes:

- the implementation of several layers to build the Defence in Depth ;
- the safety culture development in order to encourage a questioning attitude with regards to possible adverse consequences of choices and actions.

Some remaining challenges for the near future :

- Radioactive waste management is not always optimal;
- Future dismantling of unused installations.

To summarize

- The heterogeneity of the authorized class II facilities led to define the subclass IIA (irradiators, particle accelerators, radionuclides producers, ...).
- Enhanced safety requirements were requested from these Licensees (internal HPD, SAR, approved procedures, ...).
- The FANC inspections and the Bel V surveillance show the real willingness of the Licensees, the workers and the HPD to meet these requirements.
- The collected significant events since 2009 did not lead to dose exceeding dose limits.
- The authorities intent to continuously promote the nuclear safety and the safety culture.

Thank you for your attention.

Do you have any question ?

EUROSAFE