J. Sievers (GRS) – J. Arndt (GRS) – H. Grebner (GRS) – P. Bachmann (GRS)

FAILURE ASSESSMENT METHODOLOGIES FOR COMPONENTS UNDER SEVERE ACCIDENT LOADING

Towards Convergence of Technical Nuclear Safety Practices in Europe

OUTLINE

- Introduction
- Structure mechanics analysis methods for integrity assessment of a PWR
 - coolant loop under a core melt scenario
 - steel containment under peakwise loads (hydrogen combustion)
- Summary and conclusions

INTRODUCTION

Severe accident scenarios with molten core material

Three Mile Island Nuclear Generating Station (TMI)

March 28, 1979

Fukushima Daiichi Nuclear Power Plants

March 11, 2011

INTRODUCTION

- Safety relevance of the integrity of components under severe accident loading
 - primary circuit components
 - containment structures
- Objectives of research work
 - development
 - provision
 - validation

of structural mechanic analysis methods

4

SAFETY RELEVANT ISSUE

Primary circuit of German PWR

steam generator

Which component of a primary circuit fails first during a severe accident scenario?

Simplified FE-analysis/ASTOR

Towards Convergence of Technical Nuclear Safety Practices in Europe

LOADING CONDITIONS DURING A CORE MELT SCENARIO

Load case "Total Station Blackout" calculated with MELCOR

LOADING CONDITIONS DURING A CORE MELT SCENARIO

Load case "Total Station Blackout" calculated with MELCOR

STRUCTURE MECHANICS ANALYSIS MODEL

EUROSAFE

MATERIAL PROPERTIES

Temperature dependent stress-strain curves for reactor steel 20 MnMoNi 55 up to uniform elongation

E

U

MATERIAL PROPERTIES

Temperature and stress dependent creep curves for reactor steel 20 MnMoNi 55 – linear approximation up to 60 % of uniaxial creep failure strain measured by MPA University Stuttgart

FAILURE CRITERIA FOR INTEGRITY ASSESSMENT

- Failure due to plastification: Uniaxial Uniform Elongation / Stress triaxiality factor TF
- Failure due to creep: Uniaxial failure strain / Stress triaxiality factor TF

$$TF = \frac{\left|\sigma_{1} + \sigma_{2} + \sigma_{3}\right|}{\sigma_{effektiv}}$$
due to Ju and Buttler (1984)

• Safety related assessment of failure:

60% uniaxial creep failure strain, TF >1 based on elasto-plastic stress calculation

 Assessment concerning failure as a matter of fact: 100% uniaxial creep failure strain, TF = 1 for failure due to plastification or/and creep

STRUCTURE MECHANICS ANALYSIS RESULTS

Integrity assessment of main cooling line

STRUCTURE MECHANICS ANALYSIS RESULTS

Integrity assessment of surge line

STRUCTURE MECHANICS ANALYSIS RESULTS

Integrity assessment of main cooling and surge line

SAFETY RELEVANT ISSUE

Steel containment of German PWR

What is the load carrying capacity of a steel containment during a severe accident scenario with postulated hydrogen combustion?

LOADING DUE TO HYDROGEN COMBUSTION

- Measured and calculated pressure values in TMI-2 containment during severe accident 1979 [EPRI, 2010]:
 - peak pressure ~0,3 MPa
 - peak duration ~10 s increase / >70 s decrease
- Calculated pressure distributions at top floors in Fukushima units during severe accident 2011 [JNES, 2012]:
 - peak pressure ~1,5 MPa
 - peak duration <100 ms
- Calculated pressure / temperature values for postulated severe accident scenarios with consideration of catalytic recombinators [GRS, 2012]:
 - peak pressures < 0,05 MPa
 - peak duration ~40 70 s
 - peak temperatures < 370 °C

EUROSAFE

EUROSAFE

Towards Convergence of Technical Nuclear Safety Practices in Europe

Towards Convergence of Technical Nuclear Safety Practices in Europe

Loadcase: Pressure peak with Peak pressure 1 MPa Peak duration 32 ms local equivalent stress t = **43,0 ms** 1 500 TIME 0.04300 EFFECTIVE DISP MAG 10.00 STRESS RST CALC 0,8 400 TIME 0.04300 - 350.0 Spannung [MPa] Druckstoß [MPa] 300.0 43 ms 0,6 300 250.0 - 200.0 Druckstoß - 150.0 - 100.0 - 50.0 Vergl. Spannung 0.4 200 Streckgrenze - 0.0 100 0,2 MAXIMUM **A** 389.1 EG 6, EL 1039, IPT 1 0 0 MINIMUM # 0.2358 EG 2. EL 15432. IPT $\gamma \rightarrow$ 0 20 40 80 100 60 120 140 160 Zeit [ms]

Loadcase: Pressure peak with Peak pressure 1 MPa Peak duration 32 ms local equivalent stress t = **58,5 ms** 1 500 TIME 0.05850 EFFECTIVE DISP MAG 10.00 STRESS RST CALC 0,8 400 TIME 0.05850 Spannung [MPa] - 350.0 Druckstoß [MPa] 300.0 58.5 ms 0,6 300 250.0 - 200.0 Druckstoß - 150.0 - 100.0 - 50.0 Vergl. Spannung 0.4 200 Streckgrenze - 0.0 100 0,2 MAXIMUM A 386.9 EG 6, EL 3251, IPT 1 0 0 MINIMUM X 0.1932 EG 3, EL 28604, IPT $\gamma \rightarrow$ 0 20 40 60 80 100 120 140 160 Zeit [ms]

Loadcase: Pressure peak with Peak pressure 1 MPa Peak duration 32 ms local equivalent stress t = **75,5 ms** 1 500 TIME 0.07550 EFFECTIVE DISP MAG 10.00 STRESS RST CALC 0,8 400 TIME 0.07550 - 350.0 Spannung [MPa] Druckstoß [MPa] 300.0 75.5 ms 0,6 300 250.0 - 200.0 Druckstoß - 150.0 - 100.0 - 100.0 - 50.0 - 0.0 Vergl. Spannung 0.4 200 Streckgrenze 100 0,2 MAXIMUM **A** 329.6 EG 6. EL 3458. IPT 1 0 0 MINIMUM # 0.2024 EG 2, EL 38441, IPT $\gamma \rightarrow$ 0 20 40 60 80 100 120 140 160 Zeit [ms]

- Loadcase: Pressure peak with
 - Peak pressure 1 MPa

Results of parametric study with pressure peak loading

E

DYNAMIC BEHAVIOR OF STEEL CONTAINMENT Consideration of temperature peak loading

- Loadcase: Pressure peak with
 - Peak pressure
 1 MPa
 - Peak temperature 1200°C

S

Α

F

Έ

Peak duration
32 ms

Ο

E

U

R

Towards Convergence of Technical Nuclear Safety Practices in Europe

DYNAMIC BEHAVIOR OF STEEL CONTAINMENT Consideration of temperature peak loading

Towards Convergence of Technical Nuclear Safety Practices in Europe

CONCLUSIONS

- Structural behaviour of a PWR cooling loop under loads due to core melt scenarios
 - plastic strains in the main cooling line and the surge line may reach limit values before the RPV heats up
 - structure mechanics results may effect thermal hydraulic results of accident scenarios

code coupling, simplified method in system codes

36

SUMMARY AND CONCLUSIONS

- Structural behaviour of a PWR cooling loop under loads due to core melt scenarios
 - plastic strains in the main cooling line and the surge line may reach limit values before the RPV heats up
 - structure mechanics results may effect thermal hydraulic results of accident scenarios
 - > code coupling, simplified method in system codes
- Steel containment behaviour under internal peakwise loading
 - oscillations of the pressure loaded area for peak duration 20 50 ms
 - quasi-static behaviour for peaks with duration longer than 100 ms
 - pressure peak values up to 0.4 MPa effect no plastification
 - temperature peaks may effect limited plastification and local failure close to the inner surface