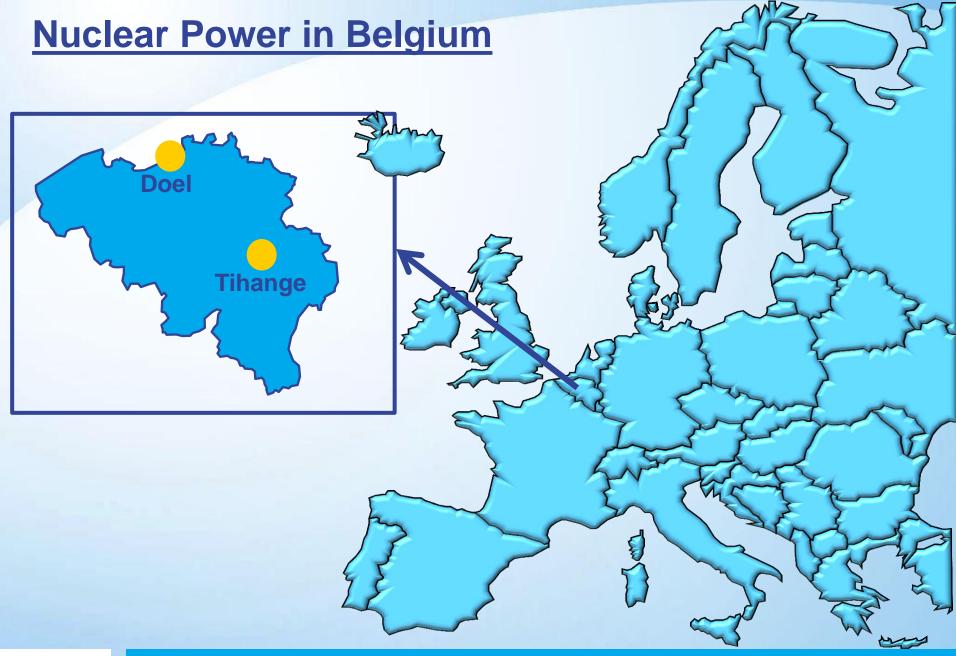
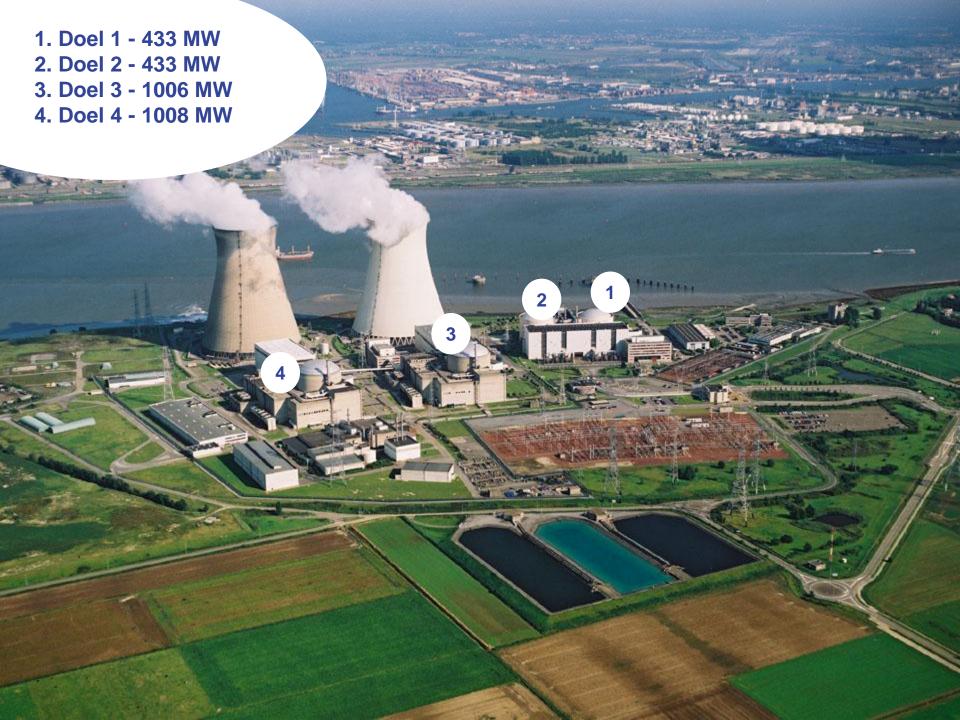

Electrabel

A utility point of view on the justification for safe long term operation


Geert Backaert


AGENDA

- Positioning Tihange 1 & Doel 12
- 2. Regulatory context
- 3. Organisation
- 4. Approach Electrabel

Units	Net capacity [MWe]	Date of 1st criticality	Design	Cumulative net load factor [%]	LTO relevant ?
Doel 1	433	1974	Westinghouse	85.1	YES
Doel 2	433	1975	Westinghouse	82.1	YES
Doel 3	1006	1982	Framatome	84.0	
Doel 4	985	1985	Westinghouse	83.6	
Tihange 1	962	1975	Framatome	79.0	YES
Tihange 2	1008	1982	Framatome	85.8	
Tihange 3	1015	1985	Westinghouse	86.6	

POSITIONING DOEL 1/2 AND TIHANGE 1

	Name	Country	NSSS-supplier	MWe rating	Commercial operation date	Lifetime	NRC decision	
\rightarrow	Beznau 1	Switzerland	WEC	380	12/01/69	40+		
		USA	WEC	602	07/01/70	60	2004	
	Mihama 1	Japan	WEC	340	11/28/70			
		USA	WEC	524	12/21/70	60	2005	
	Robinson Unit 2	USA	WEC	735	03/07/71	60	2004	
	Novovoronezh 3	RUSSIA	MHE	417	12/30/71			
	Palisades Unit 1	USA	CE	842	12/31/71	60	2007	
\rightarrow	Beznau 2	Switzerland	WEC	380	03/01/72	40+		
	Mihama 2	Japan	MHI	500	07/25/72			
	Point Beach Unit 2	USA	WEC	524	09/30/72	60	2005	
		USA	WEC	840	12/02/72	60	2003	
		USA	WEC	693	12/04/72	60	2002	
		Russia	MHE	417	12/31/72			
		USA	WEC	840	05/01/73	60	2003	
	•	Russia	MHE	440	06/29/73			
	Oconee Unit 1	USA	BW	934	07/16/73	60	2000	
		USA	WEC	693	09/07/73	60	2002	
	•	USA	CE	499	09/26/73	60	2003	
\rightarrow		The Netherlands	KWU	450	10/25/73	60		
		USA	WEC	566	12/16/73	60	2011	
		USA	WEC	599	06/16/74	60	2011	
		USA	WEC	1062	08/01/74		Under review	
	Three Mile Island Unit 1		BW	890	09/02/74	60	2009	
	Oconee Unit 2	USA	BW	934	09/09/74	60	2000	
	Takahama 1	Japan	WEC	826	11/14/74			
	Kola 2	Russia	MHE	440	12/08/74			
		USA	BW	934	12/16/74	60	2000	
		USA	BW	845	12/19/74	60	2001	
		USA	WEC	593	12/21/74	60	2011	
\rightarrow	Doel 1	Belgium	WEC	392	02/15/75	00	2011	
	Biblis A	Germany	KWU	1225	03/01/75			
\rightarrow	Ringhals 2	Sweden	WEC	875	05/01/75	40+		
		USA	CE	925	05/08/75	60	2000	
		USA	WEC	1077	08/23/75	60	2005	
\rightarrow		Belgium	ACLF	962	09/01/75		2003	
		Japan	MHI	559	10/15/75			
		Japan	MHI	826	11/14/75			
\rightarrow	Doel 2	Belgium	WEC	433	12/01/75			
	Millstone Unit 2	USA	CE	883	12/26/75	60	2005	

- 1. Positioning Tihange 1 & Doel12
- 2. Regulatory context
- 3. Organisation
- 4. Approach Electrabel

Regulatory context to operate the Belgian nuclear units

The Belgian units are in constant evolution; through the mandatory process of decennial reviews and EBL policy of continuous improvement. This concerns as well the design as the way to operate.

 The plant itself has no technical defined lifetime. Some components have a limited lifetime, but most are replaceable (e.g. steam generators).

Nuclear phase out law (2003)

- Until 2003 the only legal limit on the lifetime was the obligatory decennial review
- In 2003 a nuclear phase-out law was voted by the Belgian parliament limiting the lifetime of Nuclear power plants to 40 years

This law mentioned also: If electricity supply is threatened, the appropriate measures can be taken.....

o In 2009 a Protocol Agreement signed by the Belgian State and GDF SUEZ

Both parties agreed to several commitments, in particular the life time extension of Doel 1 & 2 and Tihange 1 with 10 years

LTO-file

- Electrabel decided to prepare an LTO file for Doel1 and 2 and Tihange 1
- These were submitted to and approved by the nuclear safety authorities in June 2012 (Agreement on Design upgrade)
- In July 2012 the government announced its intention to prolong the lifetime of the Tihange 1 NPP to 50 years, to assure electricity supply, while the closure of Doel 1 and 2 after 40 years was confirmed.

- Preparation of the LTO file based on Strategic note issued by safety authorities in 2009:
 - ✓ Preconditions
 - Ageing
 - ✓ Design
 - ✓ Knowledge and competence management and behavior

Eurosafe

FANC: AW, MSC

FANC: WDR

Auteurs

FANC: BT, FVW

datum

september 2009

 Preparation of the LTO file based on Strategic note issued by safety authorities in 2009:

Physical Ageing

- ✓ Preconditions
- ✓ Ageing
- ✓ Design
- ✓ Knowledge and competence management and behavior

Non-Physical Ageing

Milestones in strategic note

2009	Discussion on methodology and approach		
End 2011	Submit LTO-file: ✓ Re-evalution of the design: proposal for design upgrades and related planning ✓ Ageing management: documentation conform 10CFR54		
2012 (T ₁₀ -3.5y)	Define final 'agreed design upgrade' (ADU)		
2015 (T ₁₀)	Submit: ✓ Revision or supplement of the Safety Analysis report (including ageing management, LTO-actions) Implementation completed of ageing management program		
<2020	Realization of modifications in design ('agreed design upgrade')		

- Positioning Tihange 1
- 2. Regulatory context
- 3. Organisation
- 4. Approach Electrabel

Organisation PRINCIPLES

ONE project - ONE plan - ONE team

- Two sites: two separate but coherent files, the same structure of the LTO file and applying the same methodology, resulting in a balanced content
- One integrated organization for the two sites and for the different entities involved (Electrabel, Tractebel, ...)

- Positioning Tihange 1
- 2. Regulatory context
- 3. Organisation
- 4. Approach Electrabel

Electrabel approach

- Electrabel's LTO-project was outlined according to the 4 domains:
 - Preconditions
 - Ageing
 - Design
 - Knowledge, competence and behaviour

Preconditions

LTO-preconditions

Plant programmes

Management system

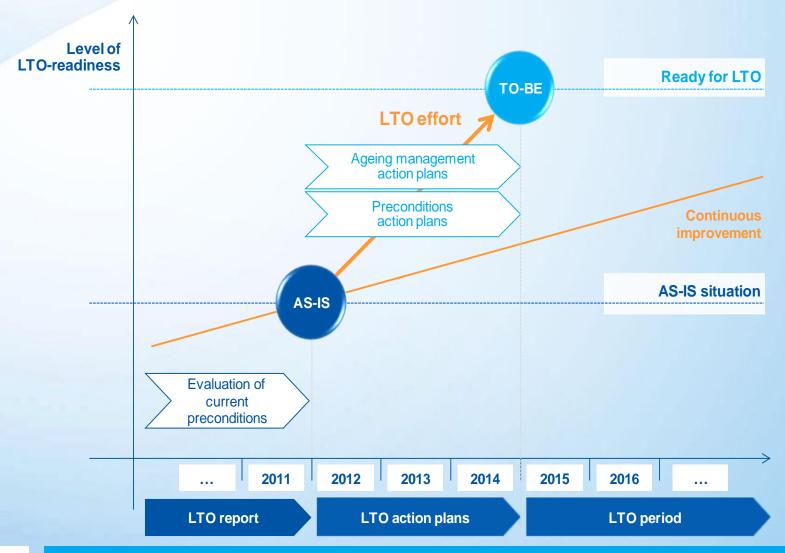
Safety analysis TLAA

Licensing basis documents

Maintenance

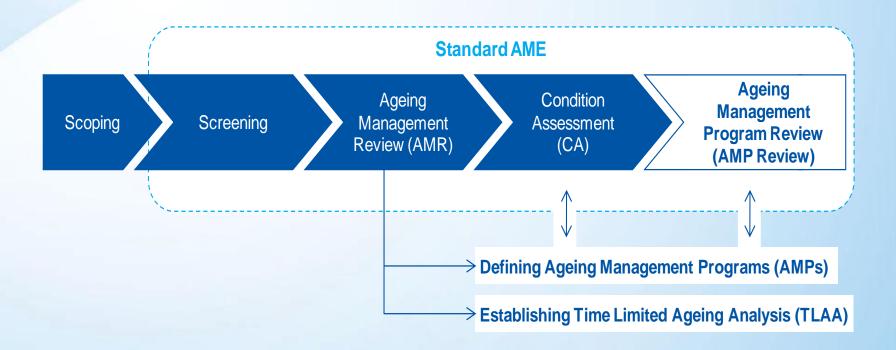
In service inspection

Configuration management


Equipment qualification

Surveillance and monitoring

Chemistry programs

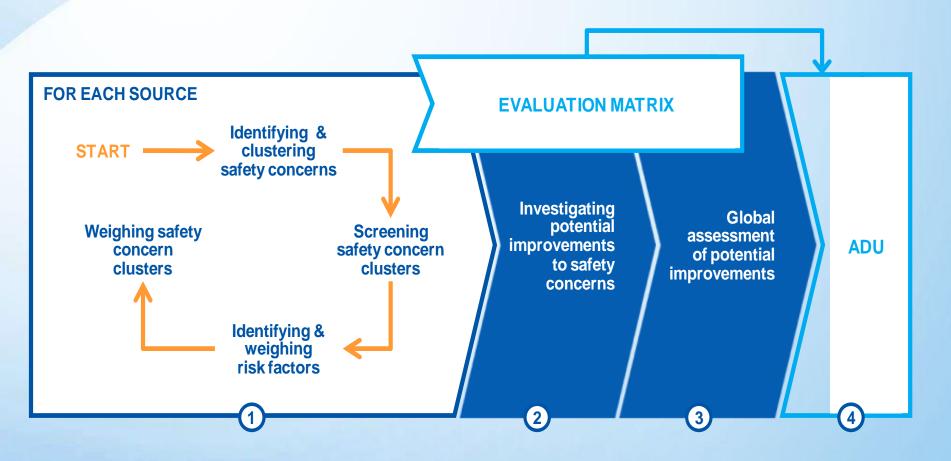

Preconditions: interpretation IAEA expectations

21

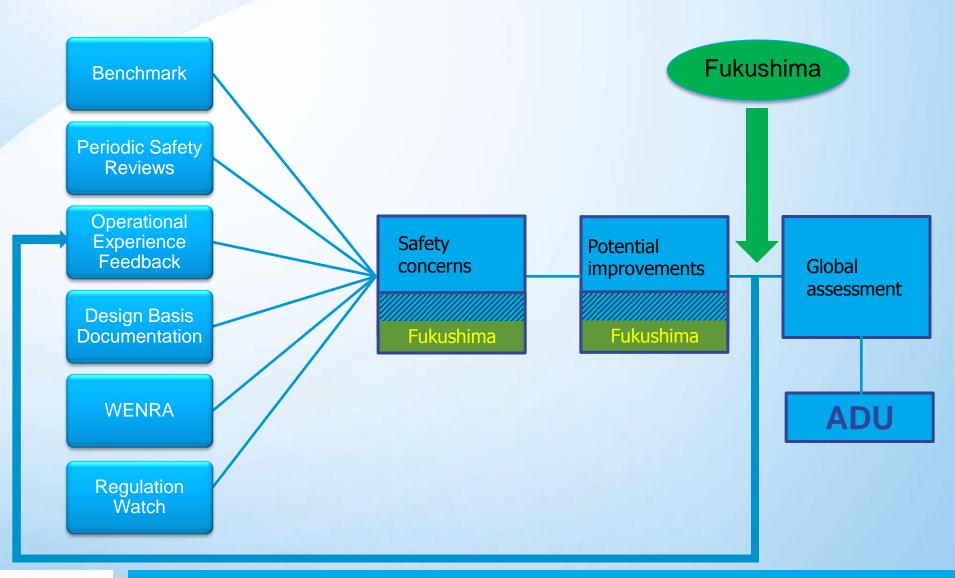
Ageing

Design

LTO-DESIGN: Sources for design upgrade


Other information sources for design re-evaluation

- (a) Regulation watch
- (b) WENRA reference levels
- (c) Benchmarks
- (d) PSR look-back
- (e) Operational experience feedback
- (f) Design basis documentation


Design

Process for design upgrade

Design

Competence, Knowledge and behaviour

- 3 points of view were identified:
 - ✓ The Nuclear Safety culture and the supporting behaviour and attitude

✓ Processes linked with Management and development of competences.

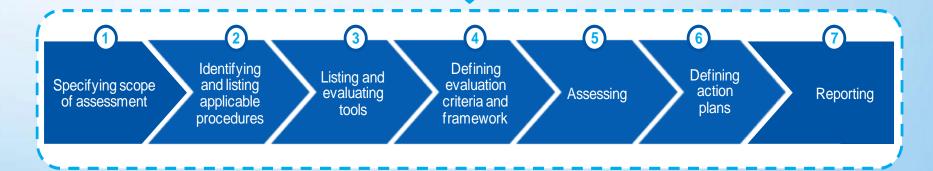
✓ Knowledge management, in particular related to the Design basis, in the process 'management of modifications'.

Competence, Knowledge and behaviour

Approach aligned with LTO precondition approach

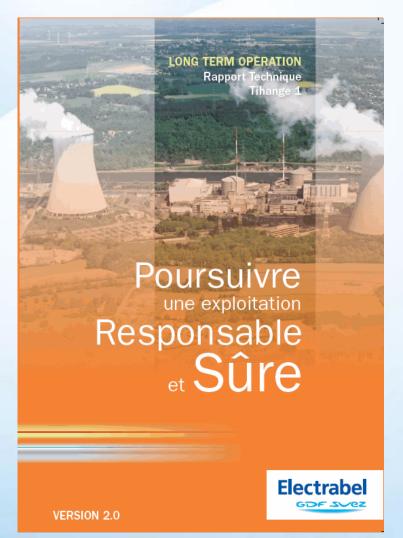
Nuclear safety culture
OSART

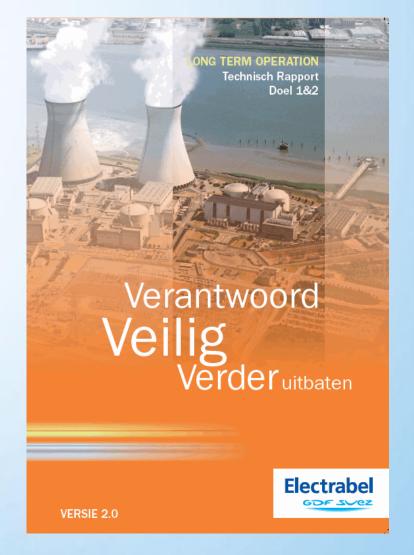
Knowledge management


Self assessments Work groups

Competence management

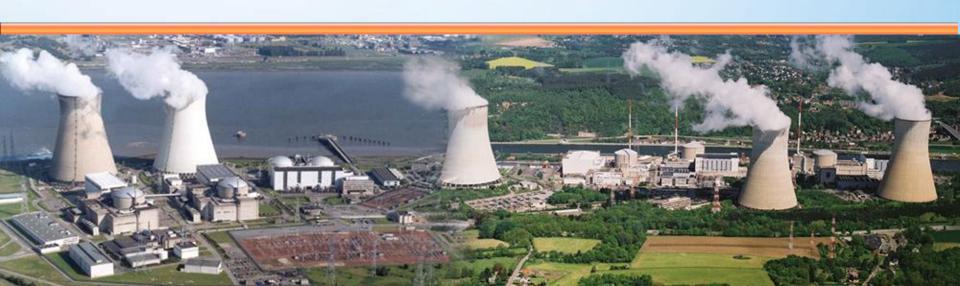
OSART


Self assessments


Work groups

LTO reports

Conclusions


A utility point of view on the justification for safe long term operation

✓ The LTO file was an opportunity for a complete and systematic approach for <u>Physical ageing</u> based on international references

✓ The LTO file was also an opportunity for reflections and developing a clear strategy for Non Physical ageing

Thank you for your attention!

You've got the energy.

